Squaring Binomials
Find each product.
(a)
(b)
= p^2 - 8 p+ 16
= p^2 - 2 #p# 4 + 42 1 x-y 22 =x^2 - 2 xy+y^2
1 p- 422
= m^2 + 14 m+ 49
= m^2 + 2 #m# 7 + 72 1 x+y 22 =x^2 + 2 xy+y^2
1 m+ 722
EXAMPLE 6
SECTION 5.4 Multiplying Polynomials 297
Square of a Binomial
The square of a binomialis the sum of the square of the first term, twice the
product of the two terms, and the square of the last term.
1 xy 22 x^2 2 xyy^2
1 xy 22 x^2 2 xyy^2
(c) (d)
= 9 r^2 - 30 rs+ 25 s^2
= 13 r 22 - 213 r 215 s 2 + 15 s 22
13 r - 5 s 22
= 4 p^2 + 12 pv+ 9 v^2
= 12 p 22 + 212 p 213 v 2 + 13 v 22
12 p+ 3 v 22
CAUTION As the products in the formula for the square of a binomial show,
More generally,
Multiplying More Complicated Binomials
Find each product.
(a)
Product of sum and difference of terms
Square both quantities.
(b)
Square of a binomial
(c)
Square
Distributive property
= x^3 + 3 x^2 y+ 3 xy^2 + y^3 Combine like terms.
= x^3 + 2 x^2 y+ xy^2 +x^2 y+ 2 xy^2 +y^3
= 1 x^2 + 2 xy+y^221 x+ y 2 x+y.
= 1 x+ y 221 x+y 2 a^3 =a^2 #a
1 x+y 23
= 4 z^2 + 4 zr+r^2 + 4 z+ 2 r + 1
= 12 z+r 22 + 212 z+r 2112 + 12
312 z+r 2 + 142
= 9 p^2 - 12 p+ 4 - 25 q^2
= 13 p- 222 - 15 q 22
313 p- 22 + 5 q 4313 p- 22 - 5 q 4
EXAMPLE 7
1 x+y 2 nZxn+ yn 1 nZ 12.
1 x+ y 22 Zx^2 +y^2.
NOW TRY
NOW TRY
EXERCISE 6
Find each product.
(a) 1 y- 1022 (b) 14 x+ 5 y 22
NOW TRY ANSWERS
- (a)
(b) 16 x^2 + 40 xy+ 25 y^2
y^2 - 20 y+ 100
This does
not equal
x 3 +y 3.
Square again. Use the
distributive property.