Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1
Squaring Binomials

Find each product.


(a)


(b)


= p^2 - 8 p+ 16


= p^2 - 2 #p# 4 + 42 1 x-y 22 =x^2 - 2 xy+y^2


1 p- 422


= m^2 + 14 m+ 49


= m^2 + 2 #m# 7 + 72 1 x+y 22 =x^2 + 2 xy+y^2


1 m+ 722


EXAMPLE 6


SECTION 5.4 Multiplying Polynomials 297


Square of a Binomial

The square of a binomialis the sum of the square of the first term, twice the


product of the two terms, and the square of the last term.


1 xy 22 x^2  2 xyy^2


1 xy 22 x^2  2 xyy^2


(c) (d)


= 9 r^2 - 30 rs+ 25 s^2


= 13 r 22 - 213 r 215 s 2 + 15 s 22


13 r - 5 s 22


= 4 p^2 + 12 pv+ 9 v^2


= 12 p 22 + 212 p 213 v 2 + 13 v 22


12 p+ 3 v 22


CAUTION As the products in the formula for the square of a binomial show,


More generally,


Multiplying More Complicated Binomials

Find each product.


(a)


Product of sum and difference of terms
Square both quantities.

(b)


Square of a binomial

(c)


Square
Distributive property

= x^3 + 3 x^2 y+ 3 xy^2 + y^3 Combine like terms.


= x^3 + 2 x^2 y+ xy^2 +x^2 y+ 2 xy^2 +y^3


= 1 x^2 + 2 xy+y^221 x+ y 2 x+y.


= 1 x+ y 221 x+y 2 a^3 =a^2 #a


1 x+y 23


= 4 z^2 + 4 zr+r^2 + 4 z+ 2 r + 1


= 12 z+r 22 + 212 z+r 2112 + 12


312 z+r 2 + 142


= 9 p^2 - 12 p+ 4 - 25 q^2


= 13 p- 222 - 15 q 22


313 p- 22 + 5 q 4313 p- 22 - 5 q 4


EXAMPLE 7


1 x+y 2 nZxn+ yn 1 nZ 12.


1 x+ y 22 Zx^2 +y^2.


NOW TRY

NOW TRY
EXERCISE 6
Find each product.


(a) 1 y- 1022 (b) 14 x+ 5 y 22


NOW TRY ANSWERS



  1. (a)
    (b) 16 x^2 + 40 xy+ 25 y^2


y^2 - 20 y+ 100

This does
not equal
x 3 +y 3.

Square again. Use the
distributive property.
Free download pdf