Dividing Rational Expressions
Divide.
(a)
Multiply by the
reciprocal.
Factor.
Multiply; lowest
terms
=
4
5 z
=
2 z
9
#^2
# 9
5 z#z
=
2 z
9
#^18
5 z^2
2 z
9
,
5 z^2
18
EXAMPLE 5
368 CHAPTER 7 Rational Expressions and Functions
(b)
Multiply by
the reciprocal.
Properties of
exponents
Properties of
exponents
=
q^4
m^3 p^4
=
m^3 p^2 q^5
m^6 p^6 q
=
m^2 pq^3
mp^4
mpq
2
m^5 p^2 q
m^2 pq^3
mp^4
,
m^5 p^2 q
mpq^2
(c)
Multiply by the reciprocal.
Factor.
Multiply; lowest terms
(d)
Definition of division
Factor.
Lowest terms
NOW TRY
=
5 m- 3
m+ 1
=
15 m- 321 m+ 42
1 m+ 4213 m- 52
13 m- 5215 m- 32
15 m- 321 m+ 12
=
5 m^2 + 17 m- 12
3 m^2 + 7 m- 20
#^15 m
(^2) - 34 m+ 15
5 m^2 + 2 m- 3
5 m^2 + 17 m- 12
3 m^2 + 7 m- 20
,
5 m^2 + 2 m- 3
15 m^2 - 34 m+ 15
=
32 k
9
=
81 k- 22
3 k
#^4 k
#k
31 k- 22
=
8 k- 16
3 k
#^4 k
2
3 k- 6
8 k- 16
3 k
,
3 k- 6
4 k^2
NOW TRY
EXERCISE 5
Divide.
(a)
(b)
3 k^2 + 5 k- 2
9 k^2 - 1
,
4 k^2 + 8 k
k^2 - 7 k
2 p^2 q
3 pq^4
,
pq
6 p^2 q^2
NOW TRY ANSWERS
- (a) (b)
k- 7
413 k+ 12
4 p^2
q^2
Complete solution available
on the Video Resources on DVD
7.1 EXERCISES
For each rational function, find all numbers that are not in the domain. Then give the domain,
using set-builder notation. See Example 1.
4. 5. 6.
7. 8. 9.
- 12.ƒ 1 x 2 =
9 x^2 - 8 x+ 3
4 x^2 + 1
ƒ 1 x 2 =
2 x^2 - 3 x+ 4
3 x^2 + 8
ƒ 1 x 2 =
x- 9
26
ƒ 1 x 2 =
x+ 2
14
ƒ 1 x 2 =
2 x+ 4
3 x^2 + 11 x- 42
ƒ 1 x 2 =
3 x+ 1
2 x^2 +x- 6
ƒ 1 x 2 =
9 x+ 8
x
ƒ 1 x 2 =
12 x+ 3
x
ƒ 1 x 2 =
8 x- 3
2 x+ 7
ƒ 1 x 2 =
6 x- 5
7 x+ 1
ƒ 1 x 2 =
x
x+ 3
ƒ 1 x 2 =
x
x- 7