OBJECTIVE 3 Add and subtract complex numbers.The commutative, asso-
ciative, and distributive properties for real numbers are also valid for complex
numbers. Thus, to add complex numbers, we add their real parts and add their
imaginary parts.
Adding Complex Numbers
Add.
(a)
Properties of real numbers
Add real parts. Add imaginary parts.
(b)
Associative property
= 1 + 4 i
= 34 + 3 + 1 - 624 + 32 + 1 - 12 + 34 i
14 + 2 i 2 + 13 - i 2 + 1 - 6 + 3 i 2
= 8 + 7 i
= 12 + 62 + 13 + 42 i
12 + 3 i 2 + 16 + 4 i 2
EXAMPLE 4
SECTION 8.7 Complex Numbers 477
NOW TRY
EXERCISE 4
Add.
(a)
(b)
- 16 - 4 i 2
15 - i 2 + 1 - 3 + 3 i 2
1 - 3 + 2 i 2 + 14 + 7 i 2
NOW TRY
EXERCISE 5
Subtract.
(a)
(b)
(c) 1 - 1 + 12 i 2 - 1 - 1 - i 2
15 - 2 i 2 - 19 - 7 i 2
17 + 10 i 2 - 13 + 5 i 2
Add real parts.
Add imaginary parts.
To subtract complex numbers, we subtract their real parts and subtract their
imaginary parts.
Subtracting Complex Numbers
Subtract.
(a)
Properties of real numbers
Subtract real parts. Subtract imaginary parts.
(b)
=- 1 + 3 i
= 17 - 82 + 3 - 3 - 1 - 624 i
17 - 3 i 2 - 18 - 6 i 2
= 3 + 3 i
= 16 - 32 + 15 - 22 i
16 + 5 i 2 - 13 + 2 i 2
EXAMPLE 5
(c)
=- 4 i NOW TRY
= 0 - 4 i
= 1 - 9 + 92 + 14 - 82 i
1 - 9 + 4 i 2 - 1 - 9 + 8 i 2
OBJECTIVE 4 Multiply complex numbers.
Multiplying Complex Numbers
Multiply.
(a)
Distributive property
Multiply.
Substitute for
Standard form
(b)
Use the FOIL method.
First Outer Inner Last
Multiply.
Combine imaginary terms;
Multiply.
= 22 + 14 i Combine real terms.
= 12 + 14 i+ 10
= 12 + 14 i- 101 - 12 i^2 =-1.
= 12 - 6 i+ 20 i- 10 i^2
= 3142 + 31 - 2 i 2 + 5 i 142 + 5 i 1 - 2 i 2
13 + 5 i 214 - 2 i 2
=- 12 + 8 i
= 8 i+ 121 - 12 - 1 i^2.
= 8 i+ 12 i^2
= 4 i 122 + 4 i 13 i 2
4 i 12 + 3 i 2
EXAMPLE 6
NOW TRY ANSWERS
- (a) (b)
- (a) (b)
(c) 13 i
4 + 5 i - 4 + 5 i
1 + 9 i 8 - 2 i
NOW TRY