Geometry with Trigonometry

(Marvins-Underground-K-12) #1

Sec. 11.6 Mobile coordinates 213


The mid-point sought is


z 3 +

1


2 |Z 2 ,Z 3 |



⎣z 2 −z 3 +√^1 −p^1 −ıq^1
( 1 −p 1 )^2 +q^21

(z 2 −z 3 )



=z 3 +

1


2 |Z 2 ,Z 3 |



⎣ 1 +√^1 −p^1 −ıq^1
( 1 −p 1 )^2 +q^21



Then points on the midline of|Z 2 Z 3 Z 1 have complex coordinates of the form

z 3 + s
2 |Z 2 ,Z 3 |


⎝√^1 −p^1 +q^1 ı
(p 1 − 1 )^2 +q^21


⎠(z 2 −z 3 )

for real numberss.
For a point of intersection of the two mid-lines we need


z 2 +

r
2 |Z 2 ,Z 3 |


⎝ 1 +√p^1 +q^1 ı
(p^21 +q^21


⎠(z 3 −z 2 )

=z 3 + s
2 |Z 2 ,Z 3 |


⎝ 1 +√^1 −p^1 −q^1 ı
(p 1 − 1 )^2 +q^21


⎠(z 2 −z 3 )

=z 3 −

s
2 |Z 2 ,Z 3 |


⎝ 1 +√^1 −p^1 −q^1 ı
(p 1 − 1 )^2 +q^21


⎠(z 3 −z 2 ).

Then


z 3 −z 2 +

+



⎣ −r
2 |Z 2 ,Z 3 |

( 1 +


p 1 +ıq 1

p^21 +q^21


s
2 |Z 2 ,Z 3 |

( 1 +


1 −p 1 −ıq 1

( 1 −p 1 )^2 +q^21

)



⎦(z 3 −z 2 )= 0 ,

1 +


−r
2 |Z 2 ,Z 3 |

( 1 +


p 1 +ıq 1

p^21 +q^21

)−


s
2 |Z 2 ,Z 3 |

( 1 +


1 −p 1 −ıq 1

( 1 −p 1 )^2 +q^21

)= 0.


Equating to 0 the imaginary part we obtain


rq 1

p^21 +q^21

+


sq 1

( 1 −p 1 )^2 +q^21

= 0 ,


and the real part


1 −


r
2 |Z 2 ,Z 3 |


⎝ 1 +√ p^1
p^21 +q^21


⎠− s
2 |Z 2 ,Z 3 |


⎝ 1 +√^1 −p^1
( 1 −p 1 )^2 +q^21


⎠= 0.

Free download pdf