Sec. 11.6 Mobile coordinates 213
The mid-point sought is
z 3 +1
2 |Z 2 ,Z 3 |
⎡
⎣z 2 −z 3 +√^1 −p^1 −ıq^1
( 1 −p 1 )^2 +q^21(z 2 −z 3 )⎤
⎦
=z 3 +1
2 |Z 2 ,Z 3 |
⎡
⎣ 1 +√^1 −p^1 −ıq^1
( 1 −p 1 )^2 +q^21⎤
⎦
Then points on the midline of|Z 2 Z 3 Z 1 have complex coordinates of the formz 3 + s
2 |Z 2 ,Z 3 |⎛
⎝√^1 −p^1 +q^1 ı
(p 1 − 1 )^2 +q^21⎞
⎠(z 2 −z 3 )for real numberss.
For a point of intersection of the two mid-lines we need
z 2 +r
2 |Z 2 ,Z 3 |⎛
⎝ 1 +√p^1 +q^1 ı
(p^21 +q^21⎞
⎠(z 3 −z 2 )=z 3 + s
2 |Z 2 ,Z 3 |⎛
⎝ 1 +√^1 −p^1 −q^1 ı
(p 1 − 1 )^2 +q^21⎞
⎠(z 2 −z 3 )=z 3 −s
2 |Z 2 ,Z 3 |⎛
⎝ 1 +√^1 −p^1 −q^1 ı
(p 1 − 1 )^2 +q^21⎞
⎠(z 3 −z 2 ).Then
z 3 −z 2 ++
⎡
⎣ −r
2 |Z 2 ,Z 3 |( 1 +
p 1 +ıq 1
√
p^21 +q^21−
s
2 |Z 2 ,Z 3 |( 1 +
1 −p 1 −ıq 1
√
( 1 −p 1 )^2 +q^21)
⎤
⎦(z 3 −z 2 )= 0 ,1 +
−r
2 |Z 2 ,Z 3 |( 1 +
p 1 +ıq 1
√
p^21 +q^21)−
s
2 |Z 2 ,Z 3 |( 1 +
1 −p 1 −ıq 1
√
( 1 −p 1 )^2 +q^21)= 0.
Equating to 0 the imaginary part we obtain−rq 1
√
p^21 +q^21+
sq 1
√
( 1 −p 1 )^2 +q^21= 0 ,
and the real part
1 −
r
2 |Z 2 ,Z 3 |⎛
⎝ 1 +√ p^1
p^21 +q^21⎞
⎠− s
2 |Z 2 ,Z 3 |⎛
⎝ 1 +√^1 −p^1
( 1 −p 1 )^2 +q^21