114 CHAPTER 3. FUZZY LOGIC FOR CONTROL
Example 3.9Take the two fuzzy setsA 1 andA 2 of Equation 3.8, and the
fuzzy setsC 1 andC 2 and their inverses.
C 1 (y)=y/ 2
C 2 (y)=
√
y
C 1 −^1 (z)=2z
C 2 −^1 (z)=z^2
The rules ìIfxisAithenyisCi,îi=1, 2 , produce the function
R(x)=
P 2
i=1C
− 1
P i (Ai(x))
2
i=1Ai(x)
=
2 if 0 ≤x≤ 1
5 − 4 x+x^2 if 1 ≤x≤ 2
3 −x if 2 ≤x≤ 3
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
y
0.5 1 1.5x 2 2.5 3
R(x)=
P 2
i=1C
− 1
P i (Ai(x))
2
i=1Ai(x)
A 1 andA 2 (dashed lines)
C 1 andC 2 (dotted lines)
3.6 Truthtablesforfuzzylogic .....................
In classical two-valued logic, truth tables can be used to distinguish between
expressions. The following tables define the operations of∨,∧,and^0 on the
truth values{ 0 , 1 },where 0 is interpreted as ìfalseî and 1 is interpreted as
ìtrue.î
∨ 01
0 01
1 11
∧ 01
0 00
1 01
0
0 1
1 0
Truth tables, in a slightly different form, can be used to determine equivalence
of logical expressions. Take two variablesx,yin classical two-valued logic, let
p=xandq=(x∧y)∨(x∧y^0 ), and compare their values: