130 CHAPTER 3. FUZZY LOGIC FOR CONTROL
- Show that any t-conorm∗satisfies the following.
(a)x∗y≥x∨yfor everyx,y∈[0,1]
(b) x∗1=1for everyx∈[0,1]
- Show that∧is the only idempotent t-norm.
- Show that the functionsηλ(x)=1+^1 −λxx are negations for allλ>− 1.
- Prove that the equality
A−^1 (α)=Aα
T
(
S
β>α
Aβ)^0
giveninEquation3.11alwaysholds.
- Explain why the 0. 5 -level set ofsin (2x+y+1)consists of all the lines
y=− 2 x−1+^16 π+2nπandy=− 2 x−1+^56 π+2mπfor integersm,n.
Some of these lines are depicted in the followingfigure.
-20
-10
0
10
20
y
-4 -2 (^2) x 4
0. 5 -level set ofsint
- Supposefis any functionR→R,anda,b,care constants. Explain why
the (nonempty) level sets forf(ax+by+c)are families of straight lines. - Show that anyα-cut of a fuzzy order (α> 0 )isanorder,thatis,show
that theα-cutSα={(x,y)∈X◊X:S(x,y)≥α}satisfies
(a) For allx∈X,(x,x)∈Sα.
(b) If(x,y)∈Sαand(y,x)∈Sαthenx=y.
(c) If(x,y)∈Sαand(y,z)∈Sαthen(x,z)∈Sα.
- LetA(x)=
x if 0 ≤x≤ 1
2 −x if 1 ≤x≤ 2
0otherwise
,B(x)=
3 x− 1
4 if
1
3 ≤x≤
5
9 − 3 x^3
4 if
5
3 ≤x≤^3
0otherwise
,
A^0 (x)=1−A(x)andB^0 (x)=1−B(x)forx∈[0,3]. Show that
A(x)∧A^0 (x)=(A(x)∧A^0 (x)∧B(x))∨(A(x)∧A^0 (x)∧B^0 (x))