Children\'s Mathematics

(Ann) #1

viii Children’s Mathematics



  • 44 EEaarrllyy wwrriittiinngg,, eeaarrllyy mmaatthheemmaattiiccss

    • • The significance of emergent writing

    • • Young children explore symbols

    • • Early writing and early mathematical marks

    • • Early (emergent) literacy is often misunderstood

    • • Conclusion



  • 55 BBrriiddggiinngg tthhee ggaapp bbeettwweeeenn hhoommee aanndd sscchhooooll mmaatthheemmaattiiccss

    • • Disconnections

    • • Understanding symbols

    • • Mathematics as a foreign language

    • • Becoming bi-numerate

    • • Teachers’ difficulties

    • • Conclusion



  • 66 MMaakkiinngg sseennssee ooff cchhiillddrreenn’’ss mmaatthheemmaattiiccaall ggrraapphhiiccss

    • • The evolution of children’s early marks

    • • Categories of children’s mathematical graphics

    • • Common forms of graphical marks

    • • Early development of mathematical meaning

    • • Early explorations with marks

    • • ‘The beginning is everything’

    • • Early written numerals

    • • Numerals as labels

    • • Representations of quantities and counting

    • • The development of early written number, quantities and counting



  • 77 UUnnddeerrssttaannddiinngg cchhiillddrreenn’’ss ddeevveellooppiinngg ccaallccuullaattiioonnss

    • • Practical mathematics

    • • The fifth dimension: written calculations

    • • Representations of early operations

    • • Counting continuously

    • • Narrative actions

    • • Supporting children’s own mathematical marks

    • • Separating sets

    • • Exploring symbols

    • • Standard symbolic calculations with small numbers

    • • Calculations with larger numbers supported by jottings

      • becoming bi-numerate



    • • Conclusion

    • 88 EEnnvviirroonnmmeennttss tthhaatt ssuuppppoorrtt cchhiillddrreenn’’ss mmaatthheemmaattiiccaall ggrraapphhiiccss

      • • Rich mathematical environments for learning

      • • The balance between adult-led and child-initiated learning

      • • Role-play and mark-making

      • • The physical environment

      • • Practical steps

      • • Graphics areas

      • • Conclusion



    • 99 CCaassee ssttuuddiieess ffrroomm eeaarrllyy cchhiillddhhoooodd sseettttiinnggss

      • • The birthday cards

      • • A number line

      • • ‘No entry’

      • • Carl’s garage

      • • Children’s Centres: The Cambridge Learning Network project

      • • The spontaneous dice game

      • • Young children think division

      • • A zoo visit

      • • Mathematics and literacy in role-play: the library van

      • • Aaron and the train

      • • Multiplying larger numbers

      • • Nectarines for a picnic

      • • Conclusion





  • 1100 DDeevveellooppiinngg cchhiillddrreenn’’ss wwrriitttteenn mmeetthhooddss

    • • The assessment of children’s mathematical representations on paper

    • • The problem with worksheets

    • • Assessing samples of children’s own mathematics

    • • Examples of assessment of children’s mathematics

    • • The pedagogy of children’s mathematical graphics

    • • Modelling mathematics



  • 1111 IInnvvoollvviinngg ppaarreennttss aanndd ffaammiilliieess

    • • Children’s first and continuing educators

    • • The home as a rich learning environment

    • • What mathematics do young children do at home?

    • • What mathematics do parents notice at home?

    • • Parents observe a wealth of mathematics

    • • Helping parents recognise children’s mathematical marks

    • • Parents’ questions about children’s mathematical graphics

    • • Conclusion

    • 1122 CChhiillddrreenn,, tteeaacchheerrss aanndd ppoossssiibbiilliittiieess

      • • Inclusion

      • • Children’s questions

      • • Teachers’ questions

      • • It’s all very well – but what about test scores?





  • RReefflleeccttiioonnss

  • Appendix: our research

  • Glossary

  • References

  • Author Index

  • Subject Index

Free download pdf