88 Basic Engineering Mathematics
Cancelling gives a^2 =
rp
(x+y)
Taking the square root of both sides givesa=√(
rp
x+y)Whenever the letter required as the new subject
occurs more than once in the original formula, after
rearranging,factorizingwill always be needed.Problem 20. Makebthe subject of the formula
a=
x−y
√
bd+beRearranging gives
x−y
√
bd+be=aMultiplying both sides by√
bd+begivesx−y=a√
bd+be
or a√
bd+be=x−yDividingbothsidesbyagives√
bd+be=x−y
a
Squaring both sides gives bd+be=(
x−y
a) 2Factorizing the LHS gives b(d+e)=(
x−y
a) 2Dividing both sides by(d+e)givesb=(
x−y
a) 2(d+e)or b=(x−y)^2
a^2 (d+e)Problem 21. Ifa=b
1 +b,makebthe subject of
the formulaRearranging givesb
1 +b=aMultiplying both sides by( 1 +b)gives
b=a( 1 +b)Removing the bracket gives b=a+abRearranging to obtain terms inbon the LHS gives
b−ab=aFactorizing the LHS gives b( 1 −a)=aDividing both sides by( 1 −a)givesb=a
1 −aProblem 22. Transpose the formulaV=Er
R+r
to makerthe subjectRearranging gives
Er
R+r=VMultiplying both sides by(R+r)gives
Er=V(R+r)Removing the bracket gives Er=VR+VrRearranging to obtain terms inron the LHS gives
Er−Vr=VRFactorizing gives r(E−V)=VRDividing both sides by(E−V)gives r=VR
E−VProblem 23. Transpose the formulay=pq^2
r+q^2−tto makeqthe subjectRearranging gives
pq^2
r+q^2−t=yand
pq^2
r+q^2=y+tMultiplying both sides by(r+q^2 )gives
pq^2 =(r+q^2 )(y+t)Removing brackets gives pq^2 =ry+rt+q^2 y+q^2 tRearranging to obtain terms inqon the LHS gives
pq^2 −q^2 y−q^2 t=ry+rtFactorizing givesq^2 (p−y−t)=r(y+t)Dividing both sides by(p−y−t)givesq^2 =r(y+t)
(p−y−t)
Taking the square root of both sides givesq=√(
r(y+t)
p−y−t)Problem 24. Given thatD
d=√(
f+p
f−p)expresspin terms ofD,dandf