176 Basic Engineering Mathematics
Problem 25. In Figure 20.36, trianglePQRis
isosceles withZ, the mid-point ofPQ. Prove that
trianglesPXZandQYZare congruent and that
trianglesRXZandRYZare congruent. Determine
the values of anglesRPZandRXZ
P Q
R
(^678) Y
288 288
X
Z
Figure 20.36
Since trianglePQRis isosceles,PR=RQand thus
∠QPR=∠RQP.
∠RXZ=∠QPR+ 28 ◦and∠RYZ=∠RQP+ 28 ◦(ext-
erioranglesofatriangleequalthesumofthetwointerior
opposite angles). Hence,∠RXZ=∠RYZ.
∠PXZ= 180 ◦−∠RXZ and ∠QYZ= 180 ◦−∠RYZ.
Thus,∠PXZ=∠QYZ.
TrianglesPXZandQYZare congruent since
∠XPZ=∠YQZ,PZ=ZQand∠XZP=∠YZQ(ASA).
Hence,XZ=YZ.
TrianglesPRZandQRZare congruent since
PR=RQ, ∠RPZ=∠RQZ and PZ=ZQ (SAS).
Hence,∠RZX=∠RZY.
TrianglesRXZandRYZare congruent since
∠RXZ=∠RYZ,XZ=YZand∠RZX=∠RZY(ASA).
∠QRZ= 67 ◦and thus∠PRQ= 67 ◦+ 67 ◦= 134 ◦.
Hence,∠RPZ=∠RQZ=
180 ◦− 134 ◦
2
= 23 ◦.
∠RXZ= 23 ◦+ 28 ◦= 51 ◦ (external angle of a tri-
angle equals the sum of the two interior opposite
angles).
Now try the following Practice Exercise
PracticeExercise 79 Congruent triangles
(answers on page 349)
- State which of the pairs of triangles in
Figure 20.37 are congruent and name their
sequences.
A
C
BD
M
(a) (b) (c)
(d) (e)
QSR
T
V
W
U
X
Y
Z
K
L
O
P
N
E
I
G
H
J
F
Figure 20.37
- In a triangleABC,AB=BCandDandE
are points onABandBC, respectively, such
thatAD=CE. Show that trianglesAEBand
CDBare congruent.
20.5 Similar triangles
Two triangles are said to besimilarif the angles of one
triangle are equal to the angles ofthe other triangle. With
reference to Figure 20.38, trianglesABCandPQRare
similar and the corresponding sides are in proportion to
each other,
i.e.
p
a
=
q
b
=
r
c
658 588
578
c
B a C
A
b
658588
r^578
Q p R
P
q
Figure 20.38
Problem 26. In Figure 20.39, find the length of
sidea