Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to trigonometry 185


B

A

0 2 4
(a) (b)

68

8

f(x)

7
6

4
3
2

B

A C

0 2 468

8

f(x)

7
6

4
3
2



Figure 21.13


(a) PointsAandBare shown in Figure 21.13(a).

In Figure 21.13(b), the horizontal and vertical
linesAC andBCare constructed. SinceABC is
a right-angled triangle, andAC=( 8 − 2 )=6and
BC=( 7 − 3 )=4, by Pythagoras’ theorem,

AB^2 =AC^2 +BC^2 = 62 + 42

and AB=


62 + 42 =


52
=7.211correct to 3
decimal places.

(b) The gradient of AB is given by tanθ,i.e.


gradient=tanθ=
BC
AC

=
4
6

=
2
3

Now try the following Practice Exercise


PracticeExercise 83 Trigonometric ratios
(answers on page 349)


  1. Sketch a triangleXY Zsuch that
    ∠Y= 90 ◦, XY=9cm and YZ=40cm.
    Determine sinZ,cosZ,tanXand cosX.

  2. In triangleABCshown in Figure 21.14, find
    sinA,cosA,tanA,sinB,cosBand tanB.


B

C

(^53)
A
Figure 21.14



  1. If cosA=
    15
    17


,findsinAand tanA, in fraction
form.


  1. If tanX=


15
112

,findsinXand cosX, in frac-
tion form.


  1. For the right-angled triangle shown in
    Figure 21.15, find (a) sinα(b) cosθ(c) tanθ.




 17
8

15
Figure 21.15


  1. If tanθ=


7
24

,findsinθand cosθin fraction
form.


  1. PointPlies at co-ordinate(− 3 , 1 )and point
    Qat( 5 ,− 4 ). Determine
    (a) the distancePQ.
    (b) the gradient of the straight linePQ.


21.4 Evaluating trigonometric ratios


of acute angles


The easiest way to evaluate trigonometric ratios of any
angle is to use a calculator. Use a calculator to check the
following (each correct to 4 decimal places).
sin29◦=0.4848 sin53. 62 ◦=0.8051
cos67◦=0.3907 cos83. 57 ◦=0.1120
tan34◦=0.6745 tan67. 83 ◦=2.4541

sin67◦ 43 ′=sin67

43
60


=sin67. 7166666 ...◦=0.9253

cos13◦ 28 ′=cos13

28
60


=cos13. 466666 ...◦=0.9725

tan56◦ 54 ′=tan56

54
60


=tan56. 90 ◦=1.5340

If we know the value ofa trigonometricratio and need to
find the angle we use theinverse functionon our calcu-
lators. For example, using shift and sin on our calculator
gives sin−^1 (
If, for example, we know the sine of an angle is 0.5 then
the value of the angle is given by

sin−^10. 5 = 30 ◦(Check that sin30◦= 0. 5 )

Similarly, if

cosθ= 0 .4371 thenθ=cos−^10. 4371 =64.08◦
Free download pdf