184 Basic Engineering Mathematics
SOHindicatessin=opposite÷hypotenuse
CAHindicatescos=adjacent÷hypotenuse
TOAindicatestan=opposite÷adjacent
Here are some worked problems to help familiarize
ourselves with trigonometric ratios.Problem 4. In trianglePQRshown in
Figure 21.10, determine sinθ,cosθand tanθPQ R51213Figure 21.10sinθ=opposite side
hypotenuse=PQ
PR=5
13=0.3846cosθ=adjacent side
hypotenuse=QR
PR=12
13=0.9231tanθ=opposite side
adjacent side=PQ
QR=5
12=0.4167Problem 5. In triangleABCof Figure 21.11,
determine lengthAC,sinC,cosC,tanC,sinA,
cosAand tanAAB C3.47cm4.62cm
Figure 21.11By Pythagoras, AC^2 =AB^2 +BC^2i.e. AC^2 =^3.^472 +^4.^622
from which AC=√
3. 472 + 4. 622 =5.778cmsinC=opposite side
hypotenuse=AB
AC=3. 47
5. 778=0.6006cosC=
adjacent side
hypotenuse=
BC
AC=
4. 62
5. 778=0.7996tanC=opposite side
adjacent side
=AB
BC
=3. 47
4. 62
=0.7511sinA=opposite side
hypotenuse=BC
AC=4. 62
5. 778=0.7996cosA=adjacent side
hypotenuse=AB
AC=3. 47
5. 778=0.6006tanA=opposite side
adjacent side=BC
AB=4. 62
3. 47=1.3314Problem 6. If tanB=8
15, determine the value of
sinB,cosB,sinAand tanAA right-angled triangleABCis shown in Figure 21.12.
If tanB=8
15
,thenAC=8andBC=15.AB C815Figure 21.12By Pythagoras, AB^2 =AC^2 +BC^2i.e. AB^2 = 82 + 152from which AB=√
82 + 152 = 17sinB=AC
AB=8
17or0.4706cosB=BC
AB=15
17or0.8824sinA=BC
AB=15
17or0.8824tanA=BC
AC=15
8or1.8750Problem 7. PointAlies at co-ordinate (2, 3) and
pointBat (8, 7). Determine (a) the distanceABand
(b) the gradient of the straight lineAB