Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

232 Basic Engineering Mathematics



  1. Calculate the length of wire in the paper clip
    shown in Figure 26.6. The dimensions are in
    millimetres.


2.5rad

2.5rad
3rad

12

6

32

Figure 26.6

26.3 Radians and degrees


Oneradianis defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.
With reference to Figure 26.7, for arc lengths,

θradians=

s
r

s
r

O r



Figure 26.7

Whens=whole circumference(= 2 πr)then

θ=

s
r

=

2 πr
r

= 2 π

i.e. 2 πradians= 360 ◦orπradians= 180 ◦

Thus,1rad=
180 ◦
π

= 57. 30 ◦,correct to 2 decimal

places.

Sinceπrad= 180 ◦,then

π
2

= 90 ◦,

π
3

= 60 ◦,

π
4

= 45 ◦,
and so on.

Problem 5. Convert to radians: (a) 125◦
(b) 69◦ 47 ′

(a) Since 180◦=πrad, 1◦=

180
π

rad, therefore

125 ◦= 125


180

)
rad=2.182 radians.

(b) 69◦ 47 ′= 69

47 ◦
60

= 69. 783 ◦(or, with your calcu-
lator, enter 69◦ 47 ′using◦’ ’ ’ function, press=
and press◦’ ’ ’ again).
and 69. 783 ◦= 69. 783


180

)
rad
=1.218 radians.

Problem 6. Convert to degrees and minutes:
(a) 0.749 radians (b) 3π/4radians

(a) Sinceπrad= 180 ◦,1rad=

180 ◦
π

therefore 0.749rad= 0. 749

(
180
π

)◦
= 42. 915 ◦
0. 915 ◦=( 0. 915 × 60 )′= 55 ′, correct to the nea-
rest minute,
Hence, 0 .749 radians= 42 ◦ 55 ′

(b) Since 1rad=

(
180
π

)o
then

3 π
4

rad=

3 π
4

(
180
π

)o
=

3
4

( 180 )◦= 135 ◦

Problem 7. Express in radians, in terms ofπ,
(a) 150◦(b) 270◦(c) 37. 5 ◦

Since 180◦=πrad, 1 ◦=

π
180

rad

(a) 150◦= 150


180

)
rad=

5 π
6

rad

(b) 270◦= 270


180

)
rad=

3 π
2

rad

(c) 37. 5 ◦= 37. 5


180

)
rad=

75 π
360

rad=

5 π
24

rad

Now try the following Practice Exercise

PracticeExercise 102 Radians and degrees
(answers on page 351)


  1. Convert to radians in terms ofπ:
    (a) 30◦ (b) 75◦ (c) 225◦

  2. Convert to radians, correct to 3 decimal
    places:
    (a) 48◦ (b) 84◦ 51 ′ (c) 232◦ 15 ′

Free download pdf