232 Basic Engineering Mathematics
- Calculate the length of wire in the paper clip
shown in Figure 26.6. The dimensions are in
millimetres.
2.5rad2.5rad
3rad12632Figure 26.626.3 Radians and degrees
Oneradianis defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.
With reference to Figure 26.7, for arc lengths,θradians=s
rs
rO rFigure 26.7Whens=whole circumference(= 2 πr)thenθ=s
r=2 πr
r= 2 πi.e. 2 πradians= 360 ◦orπradians= 180 ◦Thus,1rad=
180 ◦
π= 57. 30 ◦,correct to 2 decimalplaces.Sinceπrad= 180 ◦,thenπ
2= 90 ◦,π
3= 60 ◦,π
4= 45 ◦,
and so on.Problem 5. Convert to radians: (a) 125◦
(b) 69◦ 47 ′(a) Since 180◦=πrad, 1◦=180
πrad, therefore125 ◦= 125(π180)
rad=2.182 radians.(b) 69◦ 47 ′= 6947 ◦
60= 69. 783 ◦(or, with your calcu-
lator, enter 69◦ 47 ′using◦’ ’ ’ function, press=
and press◦’ ’ ’ again).
and 69. 783 ◦= 69. 783(π
180)
rad
=1.218 radians.Problem 6. Convert to degrees and minutes:
(a) 0.749 radians (b) 3π/4radians(a) Sinceπrad= 180 ◦,1rad=180 ◦
πtherefore 0.749rad= 0. 749(
180
π)◦
= 42. 915 ◦
0. 915 ◦=( 0. 915 × 60 )′= 55 ′, correct to the nea-
rest minute,
Hence, 0 .749 radians= 42 ◦ 55 ′(b) Since 1rad=(
180
π)o
then3 π
4rad=3 π
4(
180
π)o
=3
4( 180 )◦= 135 ◦Problem 7. Express in radians, in terms ofπ,
(a) 150◦(b) 270◦(c) 37. 5 ◦Since 180◦=πrad, 1 ◦=π
180rad(a) 150◦= 150(π
180)
rad=5 π
6rad(b) 270◦= 270(π
180)
rad=3 π
2rad(c) 37. 5 ◦= 37. 5(π
180)
rad=75 π
360rad=5 π
24radNow try the following Practice ExercisePracticeExercise 102 Radians and degrees
(answers on page 351)- Convert to radians in terms ofπ:
(a) 30◦ (b) 75◦ (c) 225◦ - Convert to radians, correct to 3 decimal
places:
(a) 48◦ (b) 84◦ 51 ′ (c) 232◦ 15 ′