232 Basic Engineering Mathematics
- Calculate the length of wire in the paper clip
shown in Figure 26.6. The dimensions are in
millimetres.
2.5rad
2.5rad
3rad
12
6
32
Figure 26.6
26.3 Radians and degrees
Oneradianis defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.
With reference to Figure 26.7, for arc lengths,
θradians=
s
r
s
r
O r
Figure 26.7
Whens=whole circumference(= 2 πr)then
θ=
s
r
=
2 πr
r
= 2 π
i.e. 2 πradians= 360 ◦orπradians= 180 ◦
Thus,1rad=
180 ◦
π
= 57. 30 ◦,correct to 2 decimal
places.
Sinceπrad= 180 ◦,then
π
2
= 90 ◦,
π
3
= 60 ◦,
π
4
= 45 ◦,
and so on.
Problem 5. Convert to radians: (a) 125◦
(b) 69◦ 47 ′
(a) Since 180◦=πrad, 1◦=
180
π
rad, therefore
125 ◦= 125
(π
180
)
rad=2.182 radians.
(b) 69◦ 47 ′= 69
47 ◦
60
= 69. 783 ◦(or, with your calcu-
lator, enter 69◦ 47 ′using◦’ ’ ’ function, press=
and press◦’ ’ ’ again).
and 69. 783 ◦= 69. 783
(π
180
)
rad
=1.218 radians.
Problem 6. Convert to degrees and minutes:
(a) 0.749 radians (b) 3π/4radians
(a) Sinceπrad= 180 ◦,1rad=
180 ◦
π
therefore 0.749rad= 0. 749
(
180
π
)◦
= 42. 915 ◦
0. 915 ◦=( 0. 915 × 60 )′= 55 ′, correct to the nea-
rest minute,
Hence, 0 .749 radians= 42 ◦ 55 ′
(b) Since 1rad=
(
180
π
)o
then
3 π
4
rad=
3 π
4
(
180
π
)o
=
3
4
( 180 )◦= 135 ◦
Problem 7. Express in radians, in terms ofπ,
(a) 150◦(b) 270◦(c) 37. 5 ◦
Since 180◦=πrad, 1 ◦=
π
180
rad
(a) 150◦= 150
(π
180
)
rad=
5 π
6
rad
(b) 270◦= 270
(π
180
)
rad=
3 π
2
rad
(c) 37. 5 ◦= 37. 5
(π
180
)
rad=
75 π
360
rad=
5 π
24
rad
Now try the following Practice Exercise
PracticeExercise 102 Radians and degrees
(answers on page 351)
- Convert to radians in terms ofπ:
(a) 30◦ (b) 75◦ (c) 225◦ - Convert to radians, correct to 3 decimal
places:
(a) 48◦ (b) 84◦ 51 ′ (c) 232◦ 15 ′