Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to differentiation 317


i.e.


dy
dx

=

8
3

x^3 +

12
x^4

Problem 10. Iff(t)= 4 t+

1

t^3

findf′(t)

f(t)= 4 t+

1

t^3

= 4 t+

1
t

3
2

= 4 t^1 +t−

3
2

Hence, f′(t)=( 4 )( 1 )t^1 −^1 +


(

3
2

)
t−

3
2 −^1

= 4 t^0 −

3
2

t−

5
2

i.e. f′(t)= 4 −


3
2 t

5
2

= 4 −

3
2


t^5

Problem 11. Determine

dy
dx

giveny=

3 x^2 − 5 x
2 x

y=

3 x^2 − 5 x
2 x

=

3 x^2
2 x


5 x
2 x

=

3
2

x−

5
2

Hence,


dy
dx

=

3
2

or1.5

Problem 12. Find the differential coefficient of

y=

2
5

x^3 −

4
x^3

+ 4


x^5 + 7

y=

2
5

x^3 −

4
x^3

+ 4


x^5 + 7

i.e. y=


2
5

x^3 − 4 x−^3 + 4 x

5

(^2) + 7
dy
dx


(
2
5
)
( 3 )x^3 −^1 −( 4 )(− 3 )x−^3 −^1
+( 4 )
(
5
2
)
x
5
2 −^1 + 0


6
5
x^2 + 12 x−^4 + 10 x
3
2
i.e.
dy
dx


6
5
x^2 +
12
x^4




  • 10

    x^3
    Problem 13. Differentiatey=
    (x+ 2 )^2
    x
    with
    respect tox
    y=
    (x+ 2 )^2
    x


    x^2 + 4 x+ 4
    x


    x^2
    x




  • 4 x
    x




  • 4
    x
    i.e. y=x^1 + 4 + 4 x−^1
    Hence,
    dy
    dx
    = 1 x^1 −^1 + 0 +( 4 )(− 1 )x−^1 −^1
    =x^0 − 4 x−^2 = 1 −
    4
    x^2
    (sincex^0 = 1 )
    Problem 14. Find the gradient of the curve
    y= 2 x^2 −
    3
    x
    atx= 2
    y= 2 x^2 −
    3
    x
    = 2 x^3 − 3 x−^1
    Gradient=
    dy
    dx
    =( 2 )( 2 )x^2 −^1 −( 3 )(− 1 )x−^1 −^1
    = 4 x+ 3 x−^2
    = 4 x+
    3
    x^2
    Whenx= 2 , gradient= 4 x+
    3
    x^2
    = 4 ( 2 )+
    3
    ( 2 )^2
    = 8 +
    3
    4
    =8.75
    Problem 15. Find the gradient of the curve
    y= 3 x^4 − 2 x^2 + 5 x−2 at the points( 0 ,− 2 )
    and( 1 , 4 )
    The gradient of a curve at a given point is given by the
    corresponding value of the derivative.
    Thus, sincey= 3 x^4 − 2 x^2 + 5 x−2,
    thegradient=
    dy
    dx
    = 12 x^3 − 4 x+ 5.
    At the point( 0 ,− 2 ),x=0, thus
    thegradient= 12 ( 0 )^3 − 4 ( 0 )+ 5 = 5
    At the point( 1 , 4 ),x=1, thus
    thegradient= 12 ( 1 )^3 − 4 ( 1 )+ 5 = 13
    Now try the following Practice Exercise
    PracticeExercise 133 Differentiation of
    y=axnby the general rule (answerson
    page 354)
    In problems 1 to 20, determine the differential
    coefficients with respect to the variable.





  1. y= 7 x^4 2. y= 2 x+ 1

  2. y=x^2 −x 4. y= 2 x^3 − 5 x+ 6

Free download pdf