Introduction to differentiation 321
1.0
0.50123
(b)(a)y 5 In x456 x1.52y021
2212123456 xdy
dx^51
xdy
dxFigure 34.8
Problem 20. Differentiate the following with
respect to the variable (a)y= 3 e^2 x(b)f(t)=4
3 e^5 t(a) Ify= 3 e^2 xthendy
dx=( 3 )( 2 e^2 x)= 6 e^2 x(b) Iff(t)=4
3 e^5 t=4
3e−^5 t,thenf′(t)=
4
3(− 5 e−^5 t)=−
20
3e−^5 t=−
20
3 e^5 tProblem 21. Differentiatey=5ln3xIfy=5ln3x,then
dy
dx=( 5 )(
1
x)
=5
xNow try the following Practice Exercise
PracticeExercise 135 Differentiation ofeax
andlnax(answers on page 354)- Differentiate with respect tox:(a)y= 5 e^3 x
(b)y=
2
7 e^2 x- Given f(θ )=5ln2θ−4ln3θ, determine
f′(θ ).
3. If f(t)=4lnt+2, evaluate f′(t) when
t= 0. 25
4. Find the gradient of the curve
y= 2 ex−
1
4ln2x at x=1
2correct to 2
decimal places.- Evaluate
dy
dxwhenx=1, giveny= 3 e^4 x−5
2 e^3 x+8ln5x. Give the answer
correct to 3 significant figures.34.8 Summary of standard derivatives
The standard derivatives used in this chapter are sum-
marized in Table 34.1 and are true for all real values
ofx.
Table 34.1yorf(x)dy
dxorf′(x)axn anxn−^1sinax acosaxcosax −asinaxeax aeaxlnax1
xProblem 22. Find the gradient of the curve
y= 3 x^2 − 7 x+2 at the point( 1 ,− 2 )Ify= 3 x^2 − 7 x+2, then gradient=dy
dx= 6 x− 7
At the point( 1 ,− 2 ),x=1,
hencegradient= 6 ( 1 )− 7 =− 1Problem 23. Ify=3
x^2−2sin4x+2
ex+ln5x,determinedy
dxy=3
x^2−2sin4x+2
ex+ln5x= 3 x−^2 −2sin4x+ 2 e−x+ln5x