Introduction to differentiation 321
1.0
0.5
0123
(b)
(a)
y 5 In x
456 x
1.5
2
y
0
21
22
1
2
123456 x
dy
dx^5
1
x
dy
dx
Figure 34.8
Problem 20. Differentiate the following with
respect to the variable (a)y= 3 e^2 x(b)f(t)=
4
3 e^5 t
(a) Ify= 3 e^2 xthen
dy
dx
=( 3 )( 2 e^2 x)= 6 e^2 x
(b) Iff(t)=
4
3 e^5 t
=
4
3
e−^5 t,then
f′(t)=
4
3
(− 5 e−^5 t)=−
20
3
e−^5 t=−
20
3 e^5 t
Problem 21. Differentiatey=5ln3x
Ify=5ln3x,then
dy
dx
=( 5 )
(
1
x
)
=
5
x
Now try the following Practice Exercise
PracticeExercise 135 Differentiation ofeax
andlnax(answers on page 354)
- Differentiate with respect tox:(a)y= 5 e^3 x
(b)y=
2
7 e^2 x
- Given f(θ )=5ln2θ−4ln3θ, determine
f′(θ ).
3. If f(t)=4lnt+2, evaluate f′(t) when
t= 0. 25
4. Find the gradient of the curve
y= 2 ex−
1
4
ln2x at x=
1
2
correct to 2
decimal places.
- Evaluate
dy
dx
whenx=1, given
y= 3 e^4 x−
5
2 e^3 x
+8ln5x. Give the answer
correct to 3 significant figures.
34.8 Summary of standard derivatives
The standard derivatives used in this chapter are sum-
marized in Table 34.1 and are true for all real values
ofx.
Table 34.1
yorf(x)
dy
dx
orf′(x)
axn anxn−^1
sinax acosax
cosax −asinax
eax aeax
lnax
1
x
Problem 22. Find the gradient of the curve
y= 3 x^2 − 7 x+2 at the point( 1 ,− 2 )
Ify= 3 x^2 − 7 x+2, then gradient=
dy
dx
= 6 x− 7
At the point( 1 ,− 2 ),x=1,
hencegradient= 6 ( 1 )− 7 =− 1
Problem 23. Ify=
3
x^2
−2sin4x+
2
ex
+ln5x,
determine
dy
dx
y=
3
x^2
−2sin4x+
2
ex
+ln5x
= 3 x−^2 −2sin4x+ 2 e−x+ln5x