Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

322 Basic Engineering Mathematics


dy
dx

= 3 (− 2 x−^3 )− 2 (4cos4x)+ 2 (−e−x)+

1
x
=−

6
x^3

−8cos4x−

2
ex

+

1
x

Now try the following Practice Exercise

PracticeExercise 136 Standard derivatives
(answers on page 354)


  1. Find the gradient of the curve
    y= 2 x^4 + 3 x^3 −x+4 at the points
    (a)( 0 , 4 ) (b)( 1 , 8 )

  2. Differentiate with respect tox:
    y=


2
x^2

+2ln2x− 2 (cos5x+3sin2x)−

2
e^3 x

34.9 Successive differentiation

When a functiony=f(x)is differentiatedwith respect
tox,thedifferentialcoefficientiswrittenas

dy
dx

orf′(x).
If the expression is differentiated again, the second dif-

ferential coefficient is obtained and is written as

d^2 y
dx^2
(pronounced dee twoyby deex squared) or f′′(x)
(pronouncedfdouble-dashx). By successive differen-

tiation further higher derivatives such as

d^3 y
dx^3

and

d^4 y
dx^4
may be obtained. Thus,

ify= 5 x^4 ,

dy
dx

= 20 x^3 ,

d^2 y
dx^2

= 60 x^2 ,

d^3 y
dx^3

= 120 x,

d^4 y
dx^4

=120 and

d^5 y
dx^5

= 0

Problem 24. Iff(x)= 4 x^5 − 2 x^3 +x−3, find
f′′(x)

f(x)= 4 x^5 − 2 x^3 +x− 3

f′(x)= 20 x^4 − 6 x^2 + 1

f′′(x)= 80 x^3 − 12 x or 4 x( 20 x^2 − 3 )

Problem 25. Giveny=

2
3

x^3 −

4
x^2

+

1
2 x



x,

determine

d^2 y
dx^2

y=

2
3

x^3 −

4
x^2

+

1
2 x



x

=

2
3

x^3 − 4 x−^2 +

1
2

x−^1 −x

1
2

dy
dx

=

(
2
3

)
(
3 x^2

)
− 4

(
− 2 x−^3

)

+

(
1
2

)
(
− 1 x−^2

)

1
2

x−

1
2

i.e. dy
dx

= 2 x^2 + 8 x−^3 −

1
2

x−^2 −

1
2

x−

1
2

d^2 y
dx^2

= 4 x+( 8 )(− 3 x−^4 )−

(
1
2

)
(
− 2 x−^3

)


(
1
2

)(

1
2

x−

3
2

)

= 4 x− 24 x−^4 + 1 x−^3 +

1
4

x−

3
2

i.e.
d^2 y
dx^2

= 4 x−

24
x^4

+

1
x^3

+

1
4


x^3

Now try the following Practice Exercise

PracticeExercise 137 Successive
differentiation (answers on page 354)


  1. If y= 3 x^4 + 2 x^3 − 3 x+2, find (a)


d^2 y
dx^2
(b)

d^3 y
dx^3


  1. Ify= 4 x^2 +


1
x

find

d^2 y
dx^2


  1. (a) Given f(t)=


2
5

t^2 −

1
t^3

+

3
t



t+1,
determinef′′(t).
(b) Evaluatef′′(t)in part (a) whent=1.


  1. Ify=3sin2t+cost,find


d^2 y
dx^2


  1. Iff(θ )=2ln4θ, show thatf′′(θ )=−


2
θ^2
Free download pdf