322 Basic Engineering Mathematics
dy
dx
= 3 (− 2 x−^3 )− 2 (4cos4x)+ 2 (−e−x)+
1
x
=−
6
x^3
−8cos4x−
2
ex
+
1
x
Now try the following Practice Exercise
PracticeExercise 136 Standard derivatives
(answers on page 354)
- Find the gradient of the curve
y= 2 x^4 + 3 x^3 −x+4 at the points
(a)( 0 , 4 ) (b)( 1 , 8 ) - Differentiate with respect tox:
y=
2
x^2
+2ln2x− 2 (cos5x+3sin2x)−
2
e^3 x
34.9 Successive differentiation
When a functiony=f(x)is differentiatedwith respect
tox,thedifferentialcoefficientiswrittenas
dy
dx
orf′(x).
If the expression is differentiated again, the second dif-
ferential coefficient is obtained and is written as
d^2 y
dx^2
(pronounced dee twoyby deex squared) or f′′(x)
(pronouncedfdouble-dashx). By successive differen-
tiation further higher derivatives such as
d^3 y
dx^3
and
d^4 y
dx^4
may be obtained. Thus,
ify= 5 x^4 ,
dy
dx
= 20 x^3 ,
d^2 y
dx^2
= 60 x^2 ,
d^3 y
dx^3
= 120 x,
d^4 y
dx^4
=120 and
d^5 y
dx^5
= 0
Problem 24. Iff(x)= 4 x^5 − 2 x^3 +x−3, find
f′′(x)
f(x)= 4 x^5 − 2 x^3 +x− 3
f′(x)= 20 x^4 − 6 x^2 + 1
f′′(x)= 80 x^3 − 12 x or 4 x( 20 x^2 − 3 )
Problem 25. Giveny=
2
3
x^3 −
4
x^2
+
1
2 x
−
√
x,
determine
d^2 y
dx^2
y=
2
3
x^3 −
4
x^2
+
1
2 x
−
√
x
=
2
3
x^3 − 4 x−^2 +
1
2
x−^1 −x
1
2
dy
dx
=
(
2
3
)
(
3 x^2
)
− 4
(
− 2 x−^3
)
+
(
1
2
)
(
− 1 x−^2
)
−
1
2
x−
1
2
i.e. dy
dx
= 2 x^2 + 8 x−^3 −
1
2
x−^2 −
1
2
x−
1
2
d^2 y
dx^2
= 4 x+( 8 )(− 3 x−^4 )−
(
1
2
)
(
− 2 x−^3
)
−
(
1
2
)(
−
1
2
x−
3
2
)
= 4 x− 24 x−^4 + 1 x−^3 +
1
4
x−
3
2
i.e.
d^2 y
dx^2
= 4 x−
24
x^4
+
1
x^3
+
1
4
√
x^3
Now try the following Practice Exercise
PracticeExercise 137 Successive
differentiation (answers on page 354)
- If y= 3 x^4 + 2 x^3 − 3 x+2, find (a)
d^2 y
dx^2
(b)
d^3 y
dx^3
- Ify= 4 x^2 +
1
x
find
d^2 y
dx^2
- (a) Given f(t)=
2
5
t^2 −
1
t^3
+
3
t
−
√
t+1,
determinef′′(t).
(b) Evaluatef′′(t)in part (a) whent=1.
- Ify=3sin2t+cost,find
d^2 y
dx^2
- Iff(θ )=2ln4θ, show thatf′′(θ )=−
2
θ^2