Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to differentiation 321


1.0
0.5

0123
(b)

(a)

y 5 In x

456 x

1.5

2

y

0

21
22

1

2

123456 x

dy
dx^5

1
x

dy
dx

Figure 34.8


Problem 20. Differentiate the following with
respect to the variable (a)y= 3 e^2 x(b)f(t)=

4
3 e^5 t

(a) Ify= 3 e^2 xthen

dy
dx

=( 3 )( 2 e^2 x)= 6 e^2 x

(b) Iff(t)=

4
3 e^5 t

=

4
3

e−^5 t,then

f′(t)=
4
3

(− 5 e−^5 t)=−
20
3

e−^5 t=−
20
3 e^5 t

Problem 21. Differentiatey=5ln3x

Ify=5ln3x,then


dy
dx

=( 5 )

(
1
x

)
=

5
x

Now try the following Practice Exercise


PracticeExercise 135 Differentiation ofeax
andlnax(answers on page 354)


  1. Differentiate with respect tox:(a)y= 5 e^3 x
    (b)y=


2
7 e^2 x


  1. Given f(θ )=5ln2θ−4ln3θ, determine
    f′(θ ).
    3. If f(t)=4lnt+2, evaluate f′(t) when
    t= 0. 25
    4. Find the gradient of the curve
    y= 2 ex−


1
4

ln2x at x=

1
2

correct to 2
decimal places.


  1. Evaluate


dy
dx

whenx=1, given

y= 3 e^4 x−

5
2 e^3 x

+8ln5x. Give the answer
correct to 3 significant figures.

34.8 Summary of standard derivatives

The standard derivatives used in this chapter are sum-
marized in Table 34.1 and are true for all real values
ofx.
Table 34.1

yorf(x)

dy
dx

orf′(x)

axn anxn−^1

sinax acosax

cosax −asinax

eax aeax

lnax

1
x

Problem 22. Find the gradient of the curve
y= 3 x^2 − 7 x+2 at the point( 1 ,− 2 )

Ify= 3 x^2 − 7 x+2, then gradient=

dy
dx

= 6 x− 7
At the point( 1 ,− 2 ),x=1,
hencegradient= 6 ( 1 )− 7 =− 1

Problem 23. Ify=

3
x^2

−2sin4x+

2
ex

+ln5x,

determine

dy
dx

y=

3
x^2

−2sin4x+

2
ex

+ln5x

= 3 x−^2 −2sin4x+ 2 e−x+ln5x
Free download pdf