Introduction to integration 333
x 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y 4 7 10.75 16 22.75 31 40.75 5201234 x45040302010y
y 5 3 x^2 1 4Figure 35.6
Selecting 6 intervals each of width 0.5 givesarea=( 0. 5 )[
1
2( 7 + 52 )+ 10. 75 + 16+ 22. 75 + 31 + 40. 75]=75.375 square units(b) By the mid-ordinate rule
area=(width of interval)(sum of mid-ordinates)
Selecting 6 intervals, each of width 0.5, gives the
mid-ordinates as shown by the broken lines in
Figure 35.6. Thus,area=( 0. 5 )( 8. 7 + 13. 2 + 19. 2 + 26. 7
+ 35. 7 + 46. 2 )
=74.85 square units(c) By Simpson’s rulearea=1
3(
width of
interval)[(
first+last
ordinates)+ 4(
sum of even
ordinates)+ 2(
sum of remaining
odd ordinates)]Selecting 6 intervals, each of width 0.5, givesarea=1
3( 0. 5 )[( 7 + 52 )+ 4 ( 10. 75 + 22. 75+ 40. 75 )+ 2 ( 16 + 31 )]=75 square units(d) By integrationshaded area=∫ 41ydx=∫ 41( 3 x^2 + 4 )dx=[
x^3 + 4 x] 4
1=( 64 + 16 )−( 1 + 4 )=75 square unitsIntegration gives the precise value for the area under
a curve. In this case, Simpson’s rule is seen to be the
most accurate of the three approximate methods.Problem 30. Find the area enclosed by the curve
y=sin2x,thex-axis and the ordinatesx=0and
x=π
3Asketchofy=sin2xis shown in Figure 35.7. (Note
thaty=sin2xhas a period of2 π
2i.e.,πradians.)10 /3 /2 y 5 sin 2xxyFigure 35.7