Handbook of Plant and Crop Physiology

(Steven Felgate) #1

  1. GM Kishore, D Shah. Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57:627–663, 1988.

  2. SO Duke. Glyphosate. In: PC Kearney, DD Kaufman. Herbicides: Chemistry, Degradation and Mode of Ac-
    tion. Vol 3. New York: Marcel Dekker, 1988, pp 1–70.

  3. E Grossbard, D Atkinson, eds. The Herbicide Glyphosate. London: Butterworth, 1985.

  4. DM Stalker, WR Hiatt, L Comai. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-5-
    phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem 260:4724–4728, 1985.

  5. L Comai, LC Sen, DM Stalker. An altered aroAgene product confers resistance to the herbicide glyphosate.
    Science 221:370–371, 1983.

  6. SR Padgette, G Della-Ciopa, DM Shah, RT Fraley, GM Kishore. Selective herbicide tolerance through protein
    engineering. In: J Schell, I Vasil, eds. Cell Culture and Somatic Cell Genetics of Plants. Vol 6. New York: Aca-
    demic Press, 1989, pp 441–476.

  7. L Comai, D Facciotti, WR Hiatt, G Thompson, RE Rose, DM Stalker. Expression in plants of a mutant aroA
    gene from Salmonella typhimuriumconfers tolerance to glyphosate. Nature 317:741–744, 1985.

  8. G Della-Cioppa, SC Bauer, ML Taylor, DE Rochster, BK Klein, et al. Targeting a herbicide-resistant enzyme
    fromEscherichia colito chloroplasts of higher plants. Biotechnology 5:579–584, 1987.

  9. JJ Fillati, J Kiser, R Rose, L Comai. Efficient transfer of a glyphosate tolerance gene into tomato using a bi-
    naryAgrobacterium tumefaciensvector. Biotechnology 5:726–730, 1987.

  10. CM Boerboom, DL Wyse, DA Somers. Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotus cornic-
    ulatus). Weed Sci 38:463–467, 1990.

  11. FP DeGennaro, SC Weller. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to
    glyphosate. Weed Sci 32:472–476, 1984.

  12. CV Givan, KW Joy, LA Kleczkowski. A decade of photorespiratory nitrogen cycling. Trends Biochem Sci
    13:433–437, 1988.

  13. AK Keys, IF Bird, MJ Cornelius, PJ Lea, RM Wallsgrove, BJ Miflin. Photorespiratory nitrogen cycle. Nature
    275:741–742, 1978.

  14. K Tachibana, T Watanabe, T Sekizawa, T Takematsu. Action mechanism of bialaphos. J Pestic Sci 11:33–37,
    1986.

  15. R Manderscheid, A Wild. Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase
    isolated from Triticum aestivumL. J Plant Physiol 123:135–142, 1986.

  16. R Altenburger, R Callies, LH Grimme, D Leibfritz, A Mayer. The mode of action of glufosinate in algae: the
    role of uptake and nitrogen assimilation pathways. Pestic Sci 45:305–310, 1995.

  17. CE Palmer, M Oelck. The relationship of phosphinothricin to growth and metabolism in cell cultures of Bras-
    sica napusL. J Plant Physiol 141:105–110, 1993.

  18. H Sauer, A Wild, W Rühle. The effect of phosphinothricin (glufosinate) on photosynthesis, Z Naturforsch Teil
    C 42:270–278, 1987.

  19. G Donn, E Tischer, JA Smith, HM Goodman. Herbicide-resistant alfalfa cells: an example of gene amplifica-
    tion in plants. J Mol Appl Genet 2:621–635, 1984.

  20. AR Franco, FJ López-Siles, J Cárdenas. Resistance to phosphinothricin (glufosinate) and its utilization as a ni-
    trogen source in Chlamydomonas reinhardtii. Appl Environ Microbiol 62:3834–3839, 1996.

  21. C Thompson, N Movva, R Tizard, R Crameri, J Davies, et al. Characterization of the herbicide-resistance gene
    barfromStreptomyces higroscopicus. EMBO J 6:2519–2523, 1987.

  22. W DeGreef, R Delon, M De Block, J Leemans, J Botterman. Evaluation of herbicide resistance in transgenic
    crops under field conditions. Biotechnology 7:61–64, 1989.

  23. JD Burton, JW Gronwald, DA Somers, JA Connelly, BG Gengenbach, DL Wyse. Inhibition of plant
    acetyl–coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem Biophys Res Commun
    148:1039–1044, 1987.

  24. HY Cho, JM Widholm, FW Slife. Effects of haloxyfop on corn and soybean cell suspension cultures. Weed Sci
    34:496–501, 1986.

  25. BJ Incledon, C Hall. Acetyl–coenzyme A carboxylase: quaternary structure and inhibition by graminicidal her-
    bicides. Pestic Biochem Physiol 57:255–271, 1997.

  26. HK Lichtenthaler. Mode of action of herbicides affecting acetyl-CoA carboxylase and fatty acid biosynthesis.
    Z Naturforsch Teil C 45:521–528, 1990.

  27. RH Shimabukuro, BL Hoffer. Induction of ethylene as an indicator of senescence in the mode of action of di-
    clofop-methyl. Pestic Biochem Physiol 54:146–158, 1996.

  28. JM DiTomaso, PH Brown, AE Stowe, DL Linscott, LV Kochian. Effects of diclofop and diclofop-methyl on
    membrane potentials in roots of intact oat, maize and pea seedlings. Plant Physiol 95:1063–1069, 1991.

  29. RH Shimabukuro, BL Hoffer. Effect of diclofop on the membrane potentials of herbicide-resistant and sus-
    ceptible annuals ryegrass root tips. Plant Physiol 98:1415–1422, 1992.

  30. SG Gorbach, K Kuenzler, J Asshauer, On the metabolism of Hoe 234OhOH in wheat. J Agric Food Chem
    25:507–511, 1977.

  31. FS Tanaka, BL Hoffer, RH Shimabukuro, RG Wien, WC Walsh. Identification of the isomeric hydroxylated
    metabolites of methyl 2[-4-(2,4-dichlorophenoxy)phenoxy]propanoate (diclofop-methyl) in wheat. J Agric
    Food Chem 38:559–565, 1990.


786 DE LA ROSA
Free download pdf