122 3 Real Analysis
1
ak+ 1=
1
ak− 1−
1
ak+ 1 − 1, fork≥ 1.Summing up these equalities fork= 1 , 2 ,...,nyields
1
a 1 + 1+···+
1
an+ 1=
1
a 1 − 1−
1
a 2 − 1+
1
a 2 − 1−
1
a 3 − 1+···
+
1
an− 1−
1
an+ 1 − 1=
1
2
−
1
an+ 1 − 1.
Finally, adda 0 +^11 +an+^11 − 1 to both sides to obtain the identity from the statement.
Example.Express
∑^49n= 11
√
n+√
n^2 − 1asa+b
√
2 for some integersaandb.Solution.We have
1
√
n+√
n^2 − 1=
1
√(√
n+ 1
2 +√
n− 1
2) 2 =
1
√
n+ 1
2 +√
n− 1
2=
√
n+ 1
2 −√
n− 1
2
n+ 1
2 −n− 1
2=
√
n+ 1
2−
√
n− 1
2.
Hence the sum from the statement telescopes to
√
49 + 1
2
+
√
48 + 1
2
−
√
1
2
− 0 = 5 +
7
√
2
−
1
√
2
= 5 + 3
√
2.
Apply the telescopic method to the following problems.365.Prove the identity
∑nk= 1(k^2 + 1 )k!=n(n+ 1 )!.366.Letζbe a root of unity. Prove that
ζ−^1 =∑∞
n= 0ζn( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn),with the convention that the 0th term of the series is 1.