122 3 Real Analysis
1
ak+ 1
=
1
ak− 1
−
1
ak+ 1 − 1
, fork≥ 1.
Summing up these equalities fork= 1 , 2 ,...,nyields
1
a 1 + 1
+···+
1
an+ 1
=
1
a 1 − 1
−
1
a 2 − 1
+
1
a 2 − 1
−
1
a 3 − 1
+···
+
1
an− 1
−
1
an+ 1 − 1
=
1
2
−
1
an+ 1 − 1
.
Finally, adda 0 +^11 +an+^11 − 1 to both sides to obtain the identity from the statement.
Example.Express
∑^49
n= 1
1
√
n+
√
n^2 − 1
asa+b
√
2 for some integersaandb.
Solution.We have
1
√
n+
√
n^2 − 1
=
1
√(√
n+ 1
2 +
√
n− 1
2
) 2 =
1
√
n+ 1
2 +
√
n− 1
2
=
√
n+ 1
2 −
√
n− 1
2
n+ 1
2 −
n− 1
2
=
√
n+ 1
2
−
√
n− 1
2
.
Hence the sum from the statement telescopes to
√
49 + 1
2
+
√
48 + 1
2
−
√
1
2
− 0 = 5 +
7
√
2
−
1
√
2
= 5 + 3
√
2.
Apply the telescopic method to the following problems.
365.Prove the identity
∑n
k= 1
(k^2 + 1 )k!=n(n+ 1 )!.
366.Letζbe a root of unity. Prove that
ζ−^1 =
∑∞
n= 0
ζn( 1 −ζ)( 1 −ζ^2 )···( 1 −ζn),
with the convention that the 0th term of the series is 1.