152 3 Real Analysis
Proof.To prove the formula we start by computing recursively the integral
In=
∫ π 4
0
tan^2 nxdx, n≥ 1.
We have
In=
∫ π 4
0
tan^2 nxdx=
∫ π 4
0
tan^2 n−^2 xtan^2 xdx
=
∫ π 4
0
tan^2 n−^2 x( 1 +tan^2 x)dx−
∫ π 4
0
tan^2 n−^2 xdx
=
∫ π 4
0
tan^2 n−^2 xsec^2 xdx+In− 1.
The remaining integral can be computed using the substitution tanx=t. In the end, we
obtain the recurrence
In=
1
2 n− 1
−In− 1 ,n≥ 1.
So forn≥1,
In=
1
2 n− 1
−
1
2 n− 3
+···+
(− 1 )n−^2
3
+(− 1 )n−^1 I 1 ,
with
I 1 =
∫ π 4
0
tan^2 xdx=
∫ π 4
0
sec^2 xdx−
∫ π 4
0
1 dx=tanx
∣
∣∣π 4
0 −
π
4
= 1 −
π
4
.
We find that
In=
1
2 n− 1
−
1
2 n− 3
+···+
(− 1 )n−^2
3
+(− 1 )n−^1 +(− 1 )n
π
4
.
Because tan^2 nx→0asn→∞uniformly on any interval of the form[ 0 ,a),a<π 4 ,it
follows that limn→∞In=0. The Leibniz formula follows.
Below are more examples of this kind.
464.LetP(x)be a polynomial with real coefficients. Prove that
∫∞
0
e−xP(x)dx=P( 0 )+P′( 0 )+P′′( 0 )+···.