3.2 Continuity, Derivatives, and Integrals 151457.Compute the integral
∫a
0dx
x+√
a^2 −x^2(a > 0 ).458.Compute the integral
∫ π 40ln( 1 +tanx)dx.459.Find
∫ 1
0ln( 1 +x)
1 +x^2dx.460.Compute
∫∞
0lnx
x^2 +a^2
dx,whereais a positive constant.461.Compute the integral
∫ π 20xcosx−sinx
x^2 +sin^2 xdx.462.Letαbe a real number. Compute the integral
I(α)=∫ 1
− 1sinαdx
1 − 2 xcosα+x^2.
463.Give an example of a functionf:( 2 ,∞)→( 0 ,∞)with the property that
∫∞2fp(x)dxis finite if and only ifp∈[ 2 ,∞).There are special types of integrals that are computed recursively. We illustrate this
with a proof of the Leibniz formula.
The Leibniz formula.
π
4