3.2 Continuity, Derivatives, and Integrals 151
457.Compute the integral
∫a
0
dx
x+
√
a^2 −x^2
(a > 0 ).
458.Compute the integral
∫ π 4
0
ln( 1 +tanx)dx.
459.Find
∫ 1
0
ln( 1 +x)
1 +x^2
dx.
460.Compute
∫∞
0
lnx
x^2 +a^2
dx,
whereais a positive constant.
461.Compute the integral
∫ π 2
0
xcosx−sinx
x^2 +sin^2 x
dx.
462.Letαbe a real number. Compute the integral
I(α)=
∫ 1
− 1
sinαdx
1 − 2 xcosα+x^2
.
463.Give an example of a functionf:( 2 ,∞)→( 0 ,∞)with the property that
∫∞
2
fp(x)dx
is finite if and only ifp∈[ 2 ,∞).
There are special types of integrals that are computed recursively. We illustrate this
with a proof of the Leibniz formula.
The Leibniz formula.
π
4