3.2 Continuity, Derivatives, and Integrals 155This is just a Riemann sum of the function( 1 − 2 x)ln( 1 −x)over the interval[ 0 , 1 ].
Passing to the limit, we obtain
nlim→∞1
nlnGn=∫ 1
0( 1 − 2 x)ln( 1 −x)dx.The integral is computed by parts as follows:
∫ 1
0( 1 − 2 x)ln( 1 −x)dx= 2
∫ 1
0( 1 −x)ln( 1 −x)dx−∫ 1
0ln( 1 −x)dx=−( 1 −x)^2 ln( 1 −x)∣
∣^1
0 −^2
∫ 1
0( 1 −x)^2
2·
1
1 −xdx+( 1 −x)ln( 1 −x)∣∣
∣∣
10+x∣
∣∣
∣
∣
10
=−∫ 1
0( 1 −x)dx+ 1 =1
2
.
Exponentiating back, we obtain limn→∞n
√
Gn=√
e. 468.Compute
lim
n→∞[
1
√
4 n^2 − 12+
1
√
4 n^2 − 22+···+
1
√
4 n^2 −n^2]
.
469.Prove that forn≥1,
1
√
2 + 5 n+
1
√
4 + 5 n+
1
√
6 + 5 n+···+
1
√
2 n+ 5 n<
√
7 n−√
5 n.470.Compute
nlim→∞(
21 /n
n+ 1+
22 /n
n+^12+···+
2 n/n
n+^1 n)
.
471.Compute the integral
∫π
0ln( 1 − 2 acosx+a^2 )dx.472.Find all continuous functionsf:R→[ 1 ,∞)for which there exista∈Randka
positive integer such that
f(x)f( 2 x)···f (nx)≤ank,for every real numberxand positive integern.