3.2 Continuity, Derivatives, and Integrals 155
This is just a Riemann sum of the function( 1 − 2 x)ln( 1 −x)over the interval[ 0 , 1 ].
Passing to the limit, we obtain
nlim→∞
1
n
lnGn=
∫ 1
0
( 1 − 2 x)ln( 1 −x)dx.
The integral is computed by parts as follows:
∫ 1
0
( 1 − 2 x)ln( 1 −x)dx
= 2
∫ 1
0
( 1 −x)ln( 1 −x)dx−
∫ 1
0
ln( 1 −x)dx
=−( 1 −x)^2 ln( 1 −x)
∣
∣^1
0 −^2
∫ 1
0
( 1 −x)^2
2
·
1
1 −x
dx+( 1 −x)ln( 1 −x)
∣∣
∣∣
1
0
+x
∣
∣∣
∣
∣
1
0
=−
∫ 1
0
( 1 −x)dx+ 1 =
1
2
.
Exponentiating back, we obtain limn→∞n
√
Gn=
√
e.
468.Compute
lim
n→∞
[
1
√
4 n^2 − 12
+
1
√
4 n^2 − 22
+···+
1
√
4 n^2 −n^2
]
.
469.Prove that forn≥1,
1
√
2 + 5 n
+
1
√
4 + 5 n
+
1
√
6 + 5 n
+···+
1
√
2 n+ 5 n
<
√
7 n−
√
5 n.
470.Compute
nlim→∞
(
21 /n
n+ 1
+
22 /n
n+^12
+···+
2 n/n
n+^1 n
)
.
471.Compute the integral
∫π
0
ln( 1 − 2 acosx+a^2 )dx.
472.Find all continuous functionsf:R→[ 1 ,∞)for which there exista∈Randka
positive integer such that
f(x)f( 2 x)···f (nx)≤ank,
for every real numberxand positive integern.