154 3 Real Analysis
as
1
n[
1
1 +^1 n+
1
1 +^2 n+···+
1
1 +nn]
,
we recognize the Riemann sum of the functionf:[ 0 , 1 ]→R,f(x)= 1 +^1 xassociated to
the subdivisionx 0 = 0 <x 1 =n^1 <x 2 =^2 n<···<xn=nn=1, with the intermediate
pointsξi=ni∈[xi,xi+ 1 ]. It follows that
lim
n→∞(
1
n+ 1+
1
n+ 2+···+
1
2 n)
=
∫ 1
01
1 +x=ln( 1 +x)∣
∣^10 =ln 2,and the problem is solved.
We continue with a beautiful example from the book of G. Pólya, G. Szego, ̋ Aufgaben
und Lehrsätze aus der Analysis(Springer-Verlag, 1964).
Example.Denote byGnthe geometric mean of the binomial coefficients
(
n
0
)
,
(
n
1)
,...,
(
n
n)
.
Prove that
lim
n→∞√nGn=√e.Solution.We have
(
n
0
)(
n
1)
···
(
n
n)
=
∏nk= 0n!
k!(n−k)!=
(n!)n+^1
( 1! 2 !···n!)^2=
∏nk= 1(n+ 1 −k)n+^1 −^2 k=∏nk= 1(
n+ 1 −k
n+ 1)n+ 1 − 2 k
.The last equality is explained by
∑n
k= 1 (n+^1 −^2 k)=0, which shows that the denominator
is just(n+ 1 )^0 =1. Therefore,
Gn= n+^1√(
n
0)(
n
1)
···
(
n
n)
=
∏nk= 1(
1 −
k
n+ 1) 1 −n^2 +k 1
.Taking the natural logarithm, we obtain
1
nlnGn=1
n∑nk= 1(
1 −
2 k
n+ 1)
ln(
1 −
k
n+ 1