154 3 Real Analysis
as
1
n
[
1
1 +^1 n
+
1
1 +^2 n
+···+
1
1 +nn
]
,
we recognize the Riemann sum of the functionf:[ 0 , 1 ]→R,f(x)= 1 +^1 xassociated to
the subdivisionx 0 = 0 <x 1 =n^1 <x 2 =^2 n<···<xn=nn=1, with the intermediate
pointsξi=ni∈[xi,xi+ 1 ]. It follows that
lim
n→∞
(
1
n+ 1
+
1
n+ 2
+···+
1
2 n
)
=
∫ 1
0
1
1 +x
=ln( 1 +x)
∣
∣^10 =ln 2,
and the problem is solved.
We continue with a beautiful example from the book of G. Pólya, G. Szego, ̋ Aufgaben
und Lehrsätze aus der Analysis(Springer-Verlag, 1964).
Example.Denote byGnthe geometric mean of the binomial coefficients
(
n
0
)
,
(
n
1
)
,...,
(
n
n
)
.
Prove that
lim
n→∞
√nGn=√e.
Solution.We have
(
n
0
)(
n
1
)
···
(
n
n
)
=
∏n
k= 0
n!
k!(n−k)!
=
(n!)n+^1
( 1! 2 !···n!)^2
=
∏n
k= 1
(n+ 1 −k)n+^1 −^2 k=
∏n
k= 1
(
n+ 1 −k
n+ 1
)n+ 1 − 2 k
.
The last equality is explained by
∑n
k= 1 (n+^1 −^2 k)=0, which shows that the denominator
is just(n+ 1 )^0 =1. Therefore,
Gn= n+^1
√(
n
0
)(
n
1
)
···
(
n
n
)
=
∏n
k= 1
(
1 −
k
n+ 1
) 1 −n^2 +k 1
.
Taking the natural logarithm, we obtain
1
n
lnGn=
1
n
∑n
k= 1
(
1 −
2 k
n+ 1
)
ln
(
1 −
k
n+ 1