Advanced book on Mathematics Olympiad

(ff) #1
4.2 Trigonometry 237

f(x)+f

(

x+

2 π
3

)

+f

(

x+

4 π
3

)

= 3 a.

Ifa<0, thens=twould work. Ifa=0, then for somexone of the terms of the above
sum is negative. This is becausef(x)is not identically zero, since its Fourier series is
not trivial. Ifa>0, substitutingx=tin the identity deduced above and using the fact
thatf(t)= 4 a, we obtain


f

(

t+

2 π
3

)

+f

(

t+

4 π
3

)

=−a< 0.

Hence eitherf(t+^23 π)orf(t+^43 π)is negative. The problem is solved. 


666.Prove the identity
(
1 +itant
1 −itant


)n
=

1 +itannt
1 −itannt

,n≥ 1.

667.Prove the identity


1 −

(

n
2

)

+

(

n
4

)


(

n
6

)

+··· = 2 n/^2 cos

4

,n≥ 1.

668.Compute the sum
(
n
1


)

cosx+

(

n
2

)

cos 2x+···+

(

n
n

)

cosnx.

669.Find the Taylor series expansion at 0 of the function


f(x)=excosθcos(xsinθ),

whereθis a parameter.

670.Letz 1 ,z 2 ,z 3 be complex numbers of the same absolute value, none of which is real
and all distinct. Prove that ifz 1 +z 2 z 3 ,z 2 +z 3 z 1 andz 3 +z 1 z 2 are all real, then
z 1 z 2 z 3 =1.


671.Letnbe an odd positive integer and letθbe a real number such thatπθis irrational.
Setak=tan(θ+kπn),k= 1 , 2 ,...,n. Prove that


a 1 +a 2 +···+an
a 1 a 2 ···an
is an integer and determine its value.

672.Find(cosα)(cos 2α)(cos 3α)···(cos 999α)withα= 19992 π.

Free download pdf