376 Algebra
126.The solution is based on the Lagrange identity, which in our case states that ifMis
a point in space andGis the centroid of the tetrahedronABCD, then
AB^2 +AC^2 +CD^2 +AD^2 +BC^2 +BD^2
= 4 (MA^2 +MB^2 +MC^2 +MD^2 )− 16 MG^2.
ForM=Othe center of the circumscribed sphere, this reads
AB^2 +AC^2 +CD^2 +AD^2 +BC^2 +BD^2 = 16 − 16 OG^2.
Applying the AM–GM inequality, we obtain
63
√
AB·AC·CD·AD·BC·BD≤ 16 − 16 OG^2.
This combined with the hypothesis yields 16≤ 16 −OG^2. So on the one hand we
have equality in the AM–GM inequality, and on the other handO=G. Therefore,
AB=AC=AD=BC=BD=CD, so the tetrahedron is regular.
127.Adding 1 to all fractions transforms the inequality into
x^2 +y^2 + 1
2 x^2 + 1
+
y^2 +z^2 + 1
2 y^2 + 1
+
z^2 +x^2 + 1
2 z^2 + 1
≥ 3.
Applying the AM–GM inequality to the left-hand side gives
x^2 +y^2 + 1
2 x^2 + 1
+
y^2 +z^2 + 1
2 y^2 + 1
+
z^2 +x^2 + 1
2 z^2 + 1
≥ 33
√
x^2 +y^2 + 1
2 x^2 + 1
·
y^2 +z^2 + 1
2 y^2 + 1
·
z^2 +x^2 + 1
2 z^2 + 1
.
We are left with the simpler but sharper inequality
x^2 +y^2 + 1
2 x^2 + 1
·
y^2 +z^2 + 1
2 y^2 + 1
·
z^2 +x^2 + 1
2 z^2 + 1
≥ 1.
This can be proved by multiplying together
x^2 +y^2 + 1 =x^2 +
1
2
+y^2 +
1
2
≥ 2
√(
x^2 +
1
2
)(
y^2 +
1
2
)
,
y^2 +z^2 + 1 =y^2 +
1
2
+z^2 +
1
2
≥ 2
√(
y^2 +
1
2
)(
z^2 +
1
2
)
,
z^2 +x^2 + 1 =z^2 +
1
2
+x^2 +
1
2
≥ 2
√(
z^2 +
1
2
)(
y^2 +