Advanced book on Mathematics Olympiad

(ff) #1

552 Real Analysis


=

∑∞

k= 0

(− 1 )k

1 · 3 ···( 2 k− 1 )
2 k·k!
xk=

∑∞

k= 0

(− 1 )k

( 2 k)!
22 k·k!·k!
xk

=

∑∞

k= 0

(− 1 )k

1

22 k

(

2 k
k

)

xk.

Replacingxby−x^2 then taking antiderivatives, we obtain


arcsinx=

∫x

0

( 1 −t^2 )−

(^12)
dt=


∑∞

k= 0

1

22 k

(

2 k
k

)∫x

0

t^2 kdt

=

∑∞

k= 0

1

22 k( 2 k+ 1 )

(

2 k
k

)

x^2 k+^1 ,

as desired.


492.(a) Differentiating the identity from the second example from the introduction, we
obtain


2 arcsinx

1 −x^2

=


k≥ 1

1

k

( 2 k
k

) 22 kx^2 k−^1 ,

whence


xarcsinx

1 −x^2

=


k≥ 1

1

k

( 2 k
k

) 22 k−^1 x^2 k.

Differentiating both sides and multiplying byx, we obtain


x

arcsinx+x


1 −x^2
( 1 −x^2 )^3 /^2

=


k≥ 0

1

( 2 k
k

) 22 kx^2 k.

Substitutingx 2 forx, we obtain the desired identity.
Part (b) follows from (a) if we letx=1.
(S. Radulescu, M. R ̆ adulescu, ̆ Teoreme ̧si Probleme de Analiza Matematic ̆ ̆a(Theorems
and Problems in Mathematical Analysis), Editura Didactica ̧ ̆si Pedagogic ̆a, Bucharest,
1982).


493.Consider the functionfof period 2πdefined byf(x)=xif 0≤x< 2 π. This
function is continuous on( 0 , 2 π), so its Fourier series converges (pointwise) on this
interval. We compute


a 0 =

1

2 π

∫ 2 π

0

xdx=π, am= 0 , form≥ 1 ,
Free download pdf