Real Analysis 553bm=
1
π∫ 2 π0xsinmxdx=−
xcosmx
mπ∣∣
∣
2 π
0+
1
mπ∫ 2 π0cosmxdx=−2
m, form≥ 1.Therefore,
x=π−2
1
sinx−2
2
sin 2x−2
3
sin 3x−···.Divide this by 2 to obtain the identity from the statement. Substitutingx=π 2 , we obtain
the Leibniz series
π
4= 1 −
1
3
+
1
5
−
1
7
+···.
In the seriesπ−x
2=
∑∞
n= 1sinnx
n,
replacexby 2x, and then divide by 2 to obtain
π
4−
x
2=
∑∞
k= 1sin 2kx
2 k,x∈( 0 ,π).Subtracting this from the original formula, we obtain
π
4=
∑∞
k= 1sin( 2 k− 1 )x
2 k− 1,x∈( 0 ,π).494.One computes
∫ 1
0f(x)dx= 0 ,
∫ 10f(x)cos 2πnxdx= 0 , for alln≥ 1 ,
∫ 10f(x)sin 2πnxdx=1
2 πk
, for alln≥ 1.Recall that for a general Fourier expansion
f(x)=a 0 +∑∞
n= 1(
ancos2 π
Tnx+bnsin2 π
Tnx)
,
one has Parseval’s identity