Advanced book on Mathematics Olympiad

(ff) #1
Real Analysis 553

bm=


1

π

∫ 2 π

0

xsinmxdx=−
xcosmx

∣∣


2 π
0

+

1


∫ 2 π

0

cosmxdx=−

2

m

, form≥ 1.

Therefore,


x=π−

2

1

sinx−

2

2

sin 2x−

2

3

sin 3x−···.

Divide this by 2 to obtain the identity from the statement. Substitutingx=π 2 , we obtain
the Leibniz series


π
4

= 1 −

1

3

+

1

5


1

7

+···.

In the series

π−x
2

=

∑∞

n= 1

sinnx
n

,

replacexby 2x, and then divide by 2 to obtain


π
4


x
2

=

∑∞

k= 1

sin 2kx
2 k

,x∈( 0 ,π).

Subtracting this from the original formula, we obtain


π
4

=

∑∞

k= 1

sin( 2 k− 1 )x
2 k− 1

,x∈( 0 ,π).

494.One computes
∫ 1


0

f(x)dx= 0 ,
∫ 1

0

f(x)cos 2πnxdx= 0 , for alln≥ 1 ,
∫ 1

0

f(x)sin 2πnxdx=

1

2 πk
, for alln≥ 1.

Recall that for a general Fourier expansion


f(x)=a 0 +

∑∞

n= 1

(

ancos

2 π
T

nx+bnsin

2 π
T

nx

)

,

one has Parseval’s identity

Free download pdf