Real Analysis 553
bm=
1
π
∫ 2 π
0
xsinmxdx=−
xcosmx
mπ
∣∣
∣
2 π
0
+
1
mπ
∫ 2 π
0
cosmxdx=−
2
m
, form≥ 1.
Therefore,
x=π−
2
1
sinx−
2
2
sin 2x−
2
3
sin 3x−···.
Divide this by 2 to obtain the identity from the statement. Substitutingx=π 2 , we obtain
the Leibniz series
π
4
= 1 −
1
3
+
1
5
−
1
7
+···.
In the series
π−x
2
=
∑∞
n= 1
sinnx
n
,
replacexby 2x, and then divide by 2 to obtain
π
4
−
x
2
=
∑∞
k= 1
sin 2kx
2 k
,x∈( 0 ,π).
Subtracting this from the original formula, we obtain
π
4
=
∑∞
k= 1
sin( 2 k− 1 )x
2 k− 1
,x∈( 0 ,π).
494.One computes
∫ 1
0
f(x)dx= 0 ,
∫ 1
0
f(x)cos 2πnxdx= 0 , for alln≥ 1 ,
∫ 1
0
f(x)sin 2πnxdx=
1
2 πk
, for alln≥ 1.
Recall that for a general Fourier expansion
f(x)=a 0 +
∑∞
n= 1
(
ancos
2 π
T
nx+bnsin
2 π
T
nx
)
,
one has Parseval’s identity