662 Geometry and Trigonometry
so
2 sin
7 a
4
sin
5 a
4
= 0 ,
meaning thata = 0 ,^47 π,^45 π. It follows that the solutions to the original equation are
x= 2 ,2 cos^47 π,−^12 ( 1 +
√
5 ).
677.The points(x 1 ,x 2 )and(y 1 ,y 2 )lie on the circle of radiusccentered at the ori-
gin. Parametrizing the circle, we can write(x 1 ,x 2 )=(ccosφ,csinφ)and(y 1 ,y 2 )=
(ccosψ, csinψ). Then
S= 2 −c(cosφ+sinφ+cosψ+sinψ)+c^2 (cosφcosψ+sinφsinψ)
= 2 +c
√
2
(
−sin
(
φ+
π
4
)
−sin
(
ψ+
π
4
))
+c^2 cos(φ−ψ).
We can simultaneously increase each of−sin(φ+π 4 ),−sin(ψ+π 4 ), and cos(φ−ψ)
to 1 by choosingφ=ψ=^54 π. Hence the maximum ofSis 2+ 2 c
√
2 +c^2 =(c+
√
2 )^2.
(proposed by C. Rousseau for the USA Mathematical Olympiad, 2002)
678.Leta=tanα,b=tanβ,c=tanγ,α, β, γ∈(−π 2 ,π 2 ). Thena^2 + 1 =sec^2 α,
b^2 + 1 =sec^2 β,c^2 + 1 =sec^2 γ, and the inequality takes the simpler form
|sin(α−β)|≤|sin(α−γ)|+|sin(β−γ)|.
This is proved as follows:
|sin(α−β)|=|sin(α−γ+γ−β)|
=|sin(α−γ)cos(γ−β)+sin(γ−β)cos(α−γ)|
≤|sin(α−γ)||cos(γ−β)|+|sin(γ−β)||cos(α−γ)|
≤|sin(α−γ)|+|sin(γ−β)|.
(N.M. Sedrakyan, A.M. Avoyan,Neravenstva, Metody Dokazatel’stva(Inequalities,
Methods of Proof), FIZMATLIT, Moscow, 2002)
679.Expressions of the formx^2 +1 suggest a substitution by the tangent. We leta=tanu,
b=tanv,c=tanw,u, v, w∈(−π 2 ,π 2 ).The product on the right-hand side becomes
sec^2 usec^2 vsec^2 w, and the inequality can be rewritten as
− 1 ≤(tanutanv+tanutanw+tanvtanw− 1 )cosucosvcosw≤ 1.
The expression in the middle is simplified as follows:
(tanutanv+tanutanw+tanvtanw− 1 )cosucosvcosw
=sinusinvcosw+sinucosvsinw+cosusinvsinw−cosucosvcosw