Science - USA (2021-07-09)

(Antfer) #1
of HSC self-renewal and differentiation.Cell Stem Cell 25 ,
682 – 696.e8 (2019). doi:10.1016/j.stem.2019.08.003;
pmid: 31495782


  1. A. M. Newmanet al., Determining cell type abundance and
    expression from bulk tissues with digital cytometry.Nat.
    Biotechnol. 37 , 773–782 (2019). doi:10.1038/
    s41587-019-0114-2; pmid: 31061481

  2. A. Schwarzeret al., The non-coding RNA landscape of human
    hematopoiesis and leukemia.Nat. Commun. 8 , 218–17 (2017).
    doi:10.1038/s41467-017-00212-4; pmid: 28794406

  3. A. V. Krivtsovet al., Transformation from committed
    progenitor to leukaemia stem cell initiated by MLL-AF9.
    Nature 442 , 818–822 (2006). doi:10.1038/nature04980;
    pmid: 16862118

  4. Y. Wanget al., The Wnt/beta-catenin pathway is required for
    the development of leukemia stem cells in AML.Science
    327 , 1650–1653 (2010). doi:10.1126/science.1186624;
    pmid: 20339075

  5. M. Yeet al., Hematopoietic differentiation is required for
    initiation of acute myeloid leukemia.Cell Stem Cell 17 , 611– 623
    (2015). doi:10.1016/j.stem.2015.08.011; pmid: 26412561

  6. P. J. Skene, S. Henikoff, An efficient targeted nuclease strategy
    for high-resolution mapping of DNA binding sites.eLife 6 ,
    e21856 (2017). doi:10.7554/eLife.21856; pmid: 28079019

  7. T. Linget al., Chromatin occupancy and epigenetic analysis
    reveal new insights into the function of the GATA1 N terminus
    in erythropoiesis.Blood 134 , 1619–1631 (2019). doi:10.1182/
    blood.2019001234; pmid: 31409672

  8. T. M. Chlon, M. McNulty, B. Goldenson, A. Rosinski,
    J. D. Crispino, Global transcriptome and chromatin occupancy
    analysis reveal the short isoform of GATA1 is deficient for
    erythroid specification and gene expression.Haematologica
    100 , 575–584 (2015). doi:10.3324/haematol.2014.112714;
    pmid: 25682601

  9. J. Domen, I. L. Weissman, Hematopoietic stem cells need two
    signals to prevent apoptosis; BCL-2 can provide one of these,
    Kitl/c-Kit signaling the other.J. Exp. Med. 192 , 1707– 1718
    (2000). doi:10.1084/jem.192.12.1707; pmid: 11120768

  10. H. Kantarjianet al., Dasatinib versus imatinib in newly
    diagnosed chronic-phase chronic myeloid leukemia.N. Engl. J.
    Med. 362 , 2260–2270 (2010). doi:10.1056/NEJMoa1002315;
    pmid: 20525995

  11. B. D. Smithet al., Ripretinib (DCC-2618) is a switch control
    kinase inhibitor of a broad spectrum of oncogenic and
    drug-resistant KIT and PDGFRA variants.Cancer Cell 35 ,
    738 – 751.e9 (2019). doi:10.1016/j.ccell.2019.04.006;
    pmid: 31085175

  12. M. C. Heinrichet al., Inhibition of c-kit receptor tyrosine kinase
    activity by STI 571, a selective tyrosine kinase inhibitor.
    Blood 96 , 925–932 (2000). doi:10.1182/blood.V96.3.925;
    pmid: 10910906

  13. S. T. Chouet al., Trisomy 21 enhances human fetal
    erythro-megakaryocytic development.Blood 112 , 4503– 4506
    (2008). doi:10.1182/blood-2008-05-157859; pmid: 18812473

  14. O. Tunstall-Pedoeet al., Abnormalities in the myeloid
    progenitor compartment in Down syndrome fetal liver precede
    acquisition of GATA1 mutations.Blood 112 , 4507–4511 (2008).
    doi:10.1182/blood-2008-04-152967; pmid: 18689547

  15. S. McLean, C. McHale, H. Enright, Hematological abnormalities
    in adult patients with Down’s syndrome.Ir. J. Med. Sci.
    178 , 35–38 (2009). doi:10.1007/s11845-008-0223-2;
    pmid: 19020924

  16. B. Liu, S. Filippi, A. Roy, I. Roberts, Stem and progenitor cell
    dysfunction in human trisomies.EMBO Rep. 16 , 44–62 (2015).
    doi:10.15252/embr.201439583; pmid: 25520324

  17. L. Gutiérrezet al., Ablation of Gata1 in adult mice results in
    aplastic crisis, revealing its essential role in steady-state and
    stress erythropoiesis.Blood 111 , 4375–4385 (2008).
    doi:10.1182/blood-2007-09-115121; pmid: 18258797

  18. L. M. Hollandaet al., An inherited mutation leading to
    production of only the short isoform of GATA-1 is associated


with impaired erythropoiesis.Nat. Genet. 38 , 807–812 (2006).
doi:10.1038/ng1825; pmid: 16783379


  1. L. S. Ludwiget al., Altered translation of GATA1 in
    Diamond-Blackfan anemia.Nat. Med. 20 , 748–753 (2014).
    doi:10.1038/nm.3557; pmid: 24952648

  2. V. G. Sankaranet al., Exome sequencing identifies GATA1
    mutations resulting in Diamond-Blackfan anemia.J. Clin.
    Invest. 122 , 2439–2443 (2012). doi:10.1172/JCI63597;
    pmid: 22706301

  3. Z. Liet al., Developmental stage-selective effect of somatically
    mutated leukemogenic transcription factor GATA1.Nat. Genet.
    37 , 613–619 (2005). doi:10.1038/ng1566; pmid: 15895080

  4. H. Bolouriet al., The molecular landscape of pediatric acute
    myeloid leukemia reveals recurrent structural alterations and
    age-specific mutational interactions.Nat. Med. 24 , 103– 112
    (2018). doi:10.1038/nm.4439; pmid: 29227476

  5. I. Roberts, S. Izraeli, Haematopoietic development and
    leukaemia in Down syndrome.Br. J. Haematol. 167 , 587– 599
    (2014). doi:10.1111/bjh.13096; pmid: 25155832

  6. E. R. Lechmanet al., miR-126 Regulates distinct self-renewal
    outcomes in normal and malignant hematopoietic stem cells.
    Cancer Cell 29 , 214–228 (2016). doi:10.1016/
    j.ccell.2015.12.011; pmid: 26832662

  7. J.-H. Klusmannet al., miR-125b-2 is a potential oncomiR on
    human chromosome 21 in megakaryoblastic leukemia.Genes
    Dev. 24 , 478–490 (2010). doi:10.1101/gad.1856210;
    pmid: 20194440

  8. T. D. Buitenkampet al., Acute lymphoblastic leukemia in
    children with Down syndrome: A retrospective analysis from
    the Ponte di Legno study group.Blood 123 , 70–77 (2014).
    doi:10.1182/blood-2013-06-509463; pmid: 24222333

  9. S. W. K. Nget al., A 17-gene stemness score for rapid
    determination of risk in acute leukaemia.Nature 540 , 433– 437
    (2016). doi:10.1038/nature20598; pmid: 27926740

  10. D. Cruz Hernandezet al., Sensitive, rapid diagnostic test for
    transient abnormal myelopoiesis and myeloid leukemia of
    Down syndrome.Blood 136 , 1460–1465 (2020). doi:10.1182/
    blood.2020005610; pmid: 32556129

  11. C. M. McHaleet al., Prenatal origin of childhood acute myeloid
    leukemias harboring chromosomal rearrangements t(15;17)
    and inv(16).Blood 101 , 4640–4641 (2003). doi:10.1182/
    blood-2003-01-0313; pmid: 12756163

  12. C. M. McHaleet al., Prenatal origin of TEL-AML1-positive acute
    lymphoblastic leukemia in children born in California.Genes
    Chromosomes Cancer 37 , 36–43 (2003). doi:10.1002/
    gcc.10199; pmid: 12661004

  13. J. L. Wiemelset al., In utero origin of t(8;21) AML1-ETO
    translocations in childhood acute myeloid leukemia.Blood 99 ,
    3801 – 3805 (2002). doi:10.1182/blood.V99.10.3801;
    pmid: 11986239

  14. Y. Wanget al., Impact of age on the survival of pediatric
    leukemia: An analysis of 15083 children in the SEER database.
    Oncotarget 7 , 83767–83774 (2016). doi:10.18632/
    oncotarget.11765; pmid: 27590519

  15. P. H. G. Duijf, N. Schultz, R. Benezra, Cancer cells preferentially
    lose small chromosomes.Int. J. Cancer 132 , 2316– 2326
    (2013). doi:10.1002/ijc.27924; pmid: 23124507

  16. A. P. Laurent, R. S. Kotecha, S. Malinge, Gain of chromosome 21
    in hematological malignancies: Lessons from studying leukemia
    in children with Down syndrome.Leukemia 34 , 1984– 1999
    (2020). doi:10.1038/s41375-020-0854-5; pmid: 32433508


ACKNOWLEDGMENTS
We thank D. Curovic, R. Kelly, J. Law, and M. Niit at the Research
Centre for Women's and Infants’Health Biobank (Mount Sinai
Hospital) for sample coordination; B. Chow at the Pathology and
Laboratory Medicine (Mount Sinai Hospital) for assistance with
pathology; M. DSouza and R. Lopez at the Animal Resources
Centre (UHN) for support with mouse work; M. Bergeret, S. Boddeda,
S. Ng, A. Srinath, O. Subedar, A. AuYeung, and S. Zhao at the
SickKids-UHN Flow and Mass Cytometry Facility for assistance with

flow cytometry; B. Apresto at The Centre for Applied Genomics
(SickKids) for sanger sequencing; K. Ho at the Centre for Applied
Genomics (SickKids) for next-generation sequencing; A. Smith
at the Cancer Cytogenetics Laboratory (UHN) for karyotyping;
K. Asoyan, C. Cimafranca, J. Mouatt, M. Peralta, and Y. Yang at the
Pathology Research Program (UHN) and N. Law at the Sttarr
Innovation Centre (UHN) for assistance with histology; M. Bartolini
at the Advanced Optical Microscopy Facility (UHN) for slide
scanning; J. Moffat, K. Brown, and C. Ross at the Donnelly Centre for
supplying the gRNA sequences for the in vivo screen; S. Henikoff at
the Fred Hutchinson Cancer Research Center for supplying the
Protein A-Micrococcal nuclease fusion protein for the Cut&Run
assay; L. Shultz at the Jackson Laboratory for providing NSGW41
mice; the laboratories of S. Chan and F. Notta for sharing equipment;
N. Mbong and A. Mitchell for technical assistance; and H. Hasle
for sharing unpublished work. We thank C. Jones, A. Tikhonova, and
members of the Dick laboratory for comments on the manuscript.
Funding:This work was supported by funds from Human Frontier
Science Program (LT-000601); Alex’s Lemonade Stand Foundation
(19-16679); The Leukemia & Lymphoma Society and The
Leukemia & Lymphoma Society of Canada (3404-21); Portuguese
Foundation for Science and Technology (SFRH/BD/136200/2018);
Princess Margaret Cancer Centre Foundation; Ontario Institute
for Cancer Research through funding provided by the Government
of Ontario; Canadian Institutes for Health Research (Foundation:
154293, Operating Grant 130412, Operating Grant 89932, and
Canada-Japan CEEHRC Teams in Epigenetics of Stem Cells 127882);
International Development Research Centre, Canadian Cancer
Society (703212); Terry Fox Research Institute Program Project
Grant; University of Toronto’s Medicine by Design initiative, which
receives funding from the Canada First Research Excellence Fund;
and a Canada Research Chair.Author contributions:E.W.,
J.E.D., and E.R.L. conceived the project, supervised research, and
wrote the paper. J.A., O.I.G., G.K., and J.C.Y.W. edited the paper.
E.W., J.A., O.I.G., and E.R.L. analyzed experiments. E.W., J.A., S.K.C.,
M.A., S.A.S., and B.A.G. performed in vitro and in vivo experiments.
O.I.G and E.R.L. assisted with mouse work. J.A. performed
morphological analysis. O.I.G. assisted with single-cell assays.
A.M. analyzed ATAC-seq and RNA-seq data. G.K. performed Western
blot assays and Cut&Run assays and prepared miRNA libraries.
J.L.M. assisted with intrafemoral injections. S.A.M. and D.D.D.C.
performed Cut&Run analysis. M.G. and L.S. analyzed miRNA
sequencing data. J.J.F.M. generated smMIP libraries. S.M., J.C.,
and J.K.H. supplied primary TAM samples. M.C.-S.-Y. performed
CRISPR/Cas9 off-target analysis. L.G.-P. assisted with ATAC-seq
library preparations. S.A. performed smMIP analysis. M.A.
performed histopathological analysis. K.C., M.R., P.S., and D.C.
coordinated patient consent and sample collection. J.C.Y.W.
and J.K.H. provided study consultation. J.E.D. secured funding
for this study.Competing interests:D.D.D.C.: Pfizer and Nektar
Therapeutics, research funding; DNAMx, cofounder and shareholder.
J.E.D.: Celgene, research funding; Trillium Therapeutics, advisory
board. All other authors declare no competing interests.Data
and materials availability:Raw sequence data are available at
European Genome-phenome Archive (EGAS00001004780)
and processed data are available at Gene Expression Omnibus
(GSE160096). All other data are available in the manuscript or the
supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6551/eabf6202/suppl/DC1
Materials and Methods
Figs. S1 to S15
Tables S1 to S9
References ( 69 – 87 )
MDAR Reproducibility Checklist

7 November 2020; resubmitted 9 March 2021
Accepted 21 May 2021
10.1126/science.abf6202

Wagenblastet al.,Science 373 , eabf6202 (2021) 9 July 2021 13 of 13


RESEARCH | RESEARCH ARTICLE

Free download pdf