of HSC self-renewal and differentiation.Cell Stem Cell 25 ,
682 – 696.e8 (2019). doi:10.1016/j.stem.2019.08.003;
pmid: 31495782
- A. M. Newmanet al., Determining cell type abundance and
expression from bulk tissues with digital cytometry.Nat.
Biotechnol. 37 , 773–782 (2019). doi:10.1038/
s41587-019-0114-2; pmid: 31061481 - A. Schwarzeret al., The non-coding RNA landscape of human
hematopoiesis and leukemia.Nat. Commun. 8 , 218–17 (2017).
doi:10.1038/s41467-017-00212-4; pmid: 28794406 - A. V. Krivtsovet al., Transformation from committed
progenitor to leukaemia stem cell initiated by MLL-AF9.
Nature 442 , 818–822 (2006). doi:10.1038/nature04980;
pmid: 16862118 - Y. Wanget al., The Wnt/beta-catenin pathway is required for
the development of leukemia stem cells in AML.Science
327 , 1650–1653 (2010). doi:10.1126/science.1186624;
pmid: 20339075 - M. Yeet al., Hematopoietic differentiation is required for
initiation of acute myeloid leukemia.Cell Stem Cell 17 , 611– 623
(2015). doi:10.1016/j.stem.2015.08.011; pmid: 26412561 - P. J. Skene, S. Henikoff, An efficient targeted nuclease strategy
for high-resolution mapping of DNA binding sites.eLife 6 ,
e21856 (2017). doi:10.7554/eLife.21856; pmid: 28079019 - T. Linget al., Chromatin occupancy and epigenetic analysis
reveal new insights into the function of the GATA1 N terminus
in erythropoiesis.Blood 134 , 1619–1631 (2019). doi:10.1182/
blood.2019001234; pmid: 31409672 - T. M. Chlon, M. McNulty, B. Goldenson, A. Rosinski,
J. D. Crispino, Global transcriptome and chromatin occupancy
analysis reveal the short isoform of GATA1 is deficient for
erythroid specification and gene expression.Haematologica
100 , 575–584 (2015). doi:10.3324/haematol.2014.112714;
pmid: 25682601 - J. Domen, I. L. Weissman, Hematopoietic stem cells need two
signals to prevent apoptosis; BCL-2 can provide one of these,
Kitl/c-Kit signaling the other.J. Exp. Med. 192 , 1707– 1718
(2000). doi:10.1084/jem.192.12.1707; pmid: 11120768 - H. Kantarjianet al., Dasatinib versus imatinib in newly
diagnosed chronic-phase chronic myeloid leukemia.N. Engl. J.
Med. 362 , 2260–2270 (2010). doi:10.1056/NEJMoa1002315;
pmid: 20525995 - B. D. Smithet al., Ripretinib (DCC-2618) is a switch control
kinase inhibitor of a broad spectrum of oncogenic and
drug-resistant KIT and PDGFRA variants.Cancer Cell 35 ,
738 – 751.e9 (2019). doi:10.1016/j.ccell.2019.04.006;
pmid: 31085175 - M. C. Heinrichet al., Inhibition of c-kit receptor tyrosine kinase
activity by STI 571, a selective tyrosine kinase inhibitor.
Blood 96 , 925–932 (2000). doi:10.1182/blood.V96.3.925;
pmid: 10910906 - S. T. Chouet al., Trisomy 21 enhances human fetal
erythro-megakaryocytic development.Blood 112 , 4503– 4506
(2008). doi:10.1182/blood-2008-05-157859; pmid: 18812473 - O. Tunstall-Pedoeet al., Abnormalities in the myeloid
progenitor compartment in Down syndrome fetal liver precede
acquisition of GATA1 mutations.Blood 112 , 4507–4511 (2008).
doi:10.1182/blood-2008-04-152967; pmid: 18689547 - S. McLean, C. McHale, H. Enright, Hematological abnormalities
in adult patients with Down’s syndrome.Ir. J. Med. Sci.
178 , 35–38 (2009). doi:10.1007/s11845-008-0223-2;
pmid: 19020924 - B. Liu, S. Filippi, A. Roy, I. Roberts, Stem and progenitor cell
dysfunction in human trisomies.EMBO Rep. 16 , 44–62 (2015).
doi:10.15252/embr.201439583; pmid: 25520324 - L. Gutiérrezet al., Ablation of Gata1 in adult mice results in
aplastic crisis, revealing its essential role in steady-state and
stress erythropoiesis.Blood 111 , 4375–4385 (2008).
doi:10.1182/blood-2007-09-115121; pmid: 18258797 - L. M. Hollandaet al., An inherited mutation leading to
production of only the short isoform of GATA-1 is associated
with impaired erythropoiesis.Nat. Genet. 38 , 807–812 (2006).
doi:10.1038/ng1825; pmid: 16783379
- L. S. Ludwiget al., Altered translation of GATA1 in
Diamond-Blackfan anemia.Nat. Med. 20 , 748–753 (2014).
doi:10.1038/nm.3557; pmid: 24952648 - V. G. Sankaranet al., Exome sequencing identifies GATA1
mutations resulting in Diamond-Blackfan anemia.J. Clin.
Invest. 122 , 2439–2443 (2012). doi:10.1172/JCI63597;
pmid: 22706301 - Z. Liet al., Developmental stage-selective effect of somatically
mutated leukemogenic transcription factor GATA1.Nat. Genet.
37 , 613–619 (2005). doi:10.1038/ng1566; pmid: 15895080 - H. Bolouriet al., The molecular landscape of pediatric acute
myeloid leukemia reveals recurrent structural alterations and
age-specific mutational interactions.Nat. Med. 24 , 103– 112
(2018). doi:10.1038/nm.4439; pmid: 29227476 - I. Roberts, S. Izraeli, Haematopoietic development and
leukaemia in Down syndrome.Br. J. Haematol. 167 , 587– 599
(2014). doi:10.1111/bjh.13096; pmid: 25155832 - E. R. Lechmanet al., miR-126 Regulates distinct self-renewal
outcomes in normal and malignant hematopoietic stem cells.
Cancer Cell 29 , 214–228 (2016). doi:10.1016/
j.ccell.2015.12.011; pmid: 26832662 - J.-H. Klusmannet al., miR-125b-2 is a potential oncomiR on
human chromosome 21 in megakaryoblastic leukemia.Genes
Dev. 24 , 478–490 (2010). doi:10.1101/gad.1856210;
pmid: 20194440 - T. D. Buitenkampet al., Acute lymphoblastic leukemia in
children with Down syndrome: A retrospective analysis from
the Ponte di Legno study group.Blood 123 , 70–77 (2014).
doi:10.1182/blood-2013-06-509463; pmid: 24222333 - S. W. K. Nget al., A 17-gene stemness score for rapid
determination of risk in acute leukaemia.Nature 540 , 433– 437
(2016). doi:10.1038/nature20598; pmid: 27926740 - D. Cruz Hernandezet al., Sensitive, rapid diagnostic test for
transient abnormal myelopoiesis and myeloid leukemia of
Down syndrome.Blood 136 , 1460–1465 (2020). doi:10.1182/
blood.2020005610; pmid: 32556129 - C. M. McHaleet al., Prenatal origin of childhood acute myeloid
leukemias harboring chromosomal rearrangements t(15;17)
and inv(16).Blood 101 , 4640–4641 (2003). doi:10.1182/
blood-2003-01-0313; pmid: 12756163 - C. M. McHaleet al., Prenatal origin of TEL-AML1-positive acute
lymphoblastic leukemia in children born in California.Genes
Chromosomes Cancer 37 , 36–43 (2003). doi:10.1002/
gcc.10199; pmid: 12661004 - J. L. Wiemelset al., In utero origin of t(8;21) AML1-ETO
translocations in childhood acute myeloid leukemia.Blood 99 ,
3801 – 3805 (2002). doi:10.1182/blood.V99.10.3801;
pmid: 11986239 - Y. Wanget al., Impact of age on the survival of pediatric
leukemia: An analysis of 15083 children in the SEER database.
Oncotarget 7 , 83767–83774 (2016). doi:10.18632/
oncotarget.11765; pmid: 27590519 - P. H. G. Duijf, N. Schultz, R. Benezra, Cancer cells preferentially
lose small chromosomes.Int. J. Cancer 132 , 2316– 2326
(2013). doi:10.1002/ijc.27924; pmid: 23124507 - A. P. Laurent, R. S. Kotecha, S. Malinge, Gain of chromosome 21
in hematological malignancies: Lessons from studying leukemia
in children with Down syndrome.Leukemia 34 , 1984– 1999
(2020). doi:10.1038/s41375-020-0854-5; pmid: 32433508
ACKNOWLEDGMENTS
We thank D. Curovic, R. Kelly, J. Law, and M. Niit at the Research
Centre for Women's and Infants’Health Biobank (Mount Sinai
Hospital) for sample coordination; B. Chow at the Pathology and
Laboratory Medicine (Mount Sinai Hospital) for assistance with
pathology; M. DSouza and R. Lopez at the Animal Resources
Centre (UHN) for support with mouse work; M. Bergeret, S. Boddeda,
S. Ng, A. Srinath, O. Subedar, A. AuYeung, and S. Zhao at the
SickKids-UHN Flow and Mass Cytometry Facility for assistance with
flow cytometry; B. Apresto at The Centre for Applied Genomics
(SickKids) for sanger sequencing; K. Ho at the Centre for Applied
Genomics (SickKids) for next-generation sequencing; A. Smith
at the Cancer Cytogenetics Laboratory (UHN) for karyotyping;
K. Asoyan, C. Cimafranca, J. Mouatt, M. Peralta, and Y. Yang at the
Pathology Research Program (UHN) and N. Law at the Sttarr
Innovation Centre (UHN) for assistance with histology; M. Bartolini
at the Advanced Optical Microscopy Facility (UHN) for slide
scanning; J. Moffat, K. Brown, and C. Ross at the Donnelly Centre for
supplying the gRNA sequences for the in vivo screen; S. Henikoff at
the Fred Hutchinson Cancer Research Center for supplying the
Protein A-Micrococcal nuclease fusion protein for the Cut&Run
assay; L. Shultz at the Jackson Laboratory for providing NSGW41
mice; the laboratories of S. Chan and F. Notta for sharing equipment;
N. Mbong and A. Mitchell for technical assistance; and H. Hasle
for sharing unpublished work. We thank C. Jones, A. Tikhonova, and
members of the Dick laboratory for comments on the manuscript.
Funding:This work was supported by funds from Human Frontier
Science Program (LT-000601); Alex’s Lemonade Stand Foundation
(19-16679); The Leukemia & Lymphoma Society and The
Leukemia & Lymphoma Society of Canada (3404-21); Portuguese
Foundation for Science and Technology (SFRH/BD/136200/2018);
Princess Margaret Cancer Centre Foundation; Ontario Institute
for Cancer Research through funding provided by the Government
of Ontario; Canadian Institutes for Health Research (Foundation:
154293, Operating Grant 130412, Operating Grant 89932, and
Canada-Japan CEEHRC Teams in Epigenetics of Stem Cells 127882);
International Development Research Centre, Canadian Cancer
Society (703212); Terry Fox Research Institute Program Project
Grant; University of Toronto’s Medicine by Design initiative, which
receives funding from the Canada First Research Excellence Fund;
and a Canada Research Chair.Author contributions:E.W.,
J.E.D., and E.R.L. conceived the project, supervised research, and
wrote the paper. J.A., O.I.G., G.K., and J.C.Y.W. edited the paper.
E.W., J.A., O.I.G., and E.R.L. analyzed experiments. E.W., J.A., S.K.C.,
M.A., S.A.S., and B.A.G. performed in vitro and in vivo experiments.
O.I.G and E.R.L. assisted with mouse work. J.A. performed
morphological analysis. O.I.G. assisted with single-cell assays.
A.M. analyzed ATAC-seq and RNA-seq data. G.K. performed Western
blot assays and Cut&Run assays and prepared miRNA libraries.
J.L.M. assisted with intrafemoral injections. S.A.M. and D.D.D.C.
performed Cut&Run analysis. M.G. and L.S. analyzed miRNA
sequencing data. J.J.F.M. generated smMIP libraries. S.M., J.C.,
and J.K.H. supplied primary TAM samples. M.C.-S.-Y. performed
CRISPR/Cas9 off-target analysis. L.G.-P. assisted with ATAC-seq
library preparations. S.A. performed smMIP analysis. M.A.
performed histopathological analysis. K.C., M.R., P.S., and D.C.
coordinated patient consent and sample collection. J.C.Y.W.
and J.K.H. provided study consultation. J.E.D. secured funding
for this study.Competing interests:D.D.D.C.: Pfizer and Nektar
Therapeutics, research funding; DNAMx, cofounder and shareholder.
J.E.D.: Celgene, research funding; Trillium Therapeutics, advisory
board. All other authors declare no competing interests.Data
and materials availability:Raw sequence data are available at
European Genome-phenome Archive (EGAS00001004780)
and processed data are available at Gene Expression Omnibus
(GSE160096). All other data are available in the manuscript or the
supplementary materials.
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/373/6551/eabf6202/suppl/DC1
Materials and Methods
Figs. S1 to S15
Tables S1 to S9
References ( 69 – 87 )
MDAR Reproducibility Checklist
7 November 2020; resubmitted 9 March 2021
Accepted 21 May 2021
10.1126/science.abf6202
Wagenblastet al.,Science 373 , eabf6202 (2021) 9 July 2021 13 of 13
RESEARCH | RESEARCH ARTICLE