untitled

(Barré) #1
=
θ

θ
2

2
1 sin

1 sin




= 1 = R.H.S. (proved)

Example 6. Prove that : 1
2 n


1
2 n

1
si^2 A ta^2 A^

Proof : L.H.S. =
si^2 A 2 tan^2 A


1
2 n

1




=

co A

si A si A
2

2 2
s

n
2

1
2 n

1






=
co A si A

co A
si A^22

2

(^22) s n
s
2 n
1





si A si A
co A
si A^22
2
(^22) ( 1 n ) n
s
2 n
1
 




si A si A
co A
si A^22
2
(^222) n n
s
2 n
1
 




si A
si A
si A^2
2
(^22) n
1 n
2 n
1






A
si A
2
2
2 sin
2 n


= 1 = R.H.S. (proved)
Example 7. Prove that : 0
n
c 1
c 1
n


 taA
seA
seA
taA
proof : L.H.S. =
taA
seA
seA
taA
n
c 1
c 1
n 




seA taA
ta A se A
( c 1 ) n
n^2 ( c^21 )

 
[sec^2 θ 1 tan^2 θ]


seA taA
ta A ta A
( c 1 ) n
n^2 n^2




(secA 1 )tanA
0

= 0 = R.H.S. (proved)
Example 8. Prove that : seA taA
siA
siA
c n
1 n
1 n




Free download pdf