=
θ
θ
2
2
1 sin
1 sin
= 1 = R.H.S. (proved)
Example 6. Prove that : 1
2 n
1
2 n
1
si^2 A ta^2 A^
Proof : L.H.S. =
si^2 A 2 tan^2 A
1
2 n
1
=
co A
si A si A
2
2 2
s
n
2
1
2 n
1
=
co A si A
co A
si A^22
2
(^22) s n
s
2 n
1
si A si A
co A
si A^22
2
(^22) ( 1 n ) n
s
2 n
1
si A si A
co A
si A^22
2
(^222) n n
s
2 n
1
si A
si A
si A^2
2
(^22) n
1 n
2 n
1
A
si A
2
2
2 sin
2 n
= 1 = R.H.S. (proved)
Example 7. Prove that : 0
n
c 1
c 1
n
taA
seA
seA
taA
proof : L.H.S. =
taA
seA
seA
taA
n
c 1
c 1
n
seA taA
ta A se A
( c 1 ) n
n^2 ( c^21 )
[sec^2 θ 1 tan^2 θ]
seA taA
ta A ta A
( c 1 ) n
n^2 n^2
(secA 1 )tanA
0
= 0 = R.H.S. (proved)
Example 8. Prove that : seA taA
siA
siA
c n
1 n
1 n