or, sec^2 Atan^2 A 1
or, (secAtanA)(secAtanA) 1
or, ( c n ) 1
2
5
seAtaA [from (i)]
∴
5
2
secAtanA
Exercise 9⋅ 1
- Verify whether each of the following math ematical statements is true or false.
Give argument in favour of your answer.
(a) The value of tanA is always less than 1.
(b) cotA is the multiplication of cot and A.
(c) For any value of A,
5
12
secA.
(d) cos is the smallest form of cotangent.
- If
4
3
sinA , find the other trigonometric ratios of the angle A.
- Given that 15 cotA 8 , find the values of sinA and secA.
- If C is the right angle of the right angled triangle ABC, AB = 13 cm and BC
= 12 cm. and ABC θ, find the values of sinθ,cosθ and tanθ. - B is the right angle of the right angled triangle ABC. If tanA 3 , verify the
truth of 3 sinAcosA 4.
Prove (6 – 20) :
- (i) 1 ;
cosecA
1
secA
1
2 2 (ii) cotA^1 ;
1
cosA
1
2 2 (iii) tanA^1 ;
1
sinA
1
2 2
- (i) 1 ;
secA
cosA
cosecA
sinA
(ii) 1.
cotA
tanA
cosA
secA
(iii) 1
1 cosec
1
1 sin
1
^2 A ^2 A^
- (i) c s 1
1 tn
t
1 cot
tn
seAcoecA
aA
coA
A
aA
; (ii) 1
1 cot
1
1 tan
1
^2 A ^2 A^
- si A A.
A
A
aA
A
n cos
1 cot
sin
1 tn
cos
tanA 1 `sin^2 A sinA.
secA tanA
cosecA cotA
cosecA cotA
secA tanA
- 2 secA.
cosecA 1
cosecA
cosecA 1
cosecA 2
- 2 secA.
1 sinA
1
1 sinA
(^12)
- 2 tanA.
cosecA 1
1
cosecA 1
(^12)
- 2 cosecA.
sinA
1 cosA
1 cosA
sinA
- tanA
secA 1
secA 1
tanA