untitled

(Barré) #1

or, sec^2 Atan^2 A 1
or, (secAtanA)(secAtanA) 1


or, ( c n ) 1
2


5
seAtaA [from (i)]


5

2
secAtanA

Exercise 9⋅ 1


  1. Verify whether each of the following math ematical statements is true or false.
    Give argument in favour of your answer.
    (a) The value of tanA is always less than 1.
    (b) cotA is the multiplication of cot and A.


(c) For any value of A,
5


12
secA.

(d) cos is the smallest form of cotangent.



  1. If
    4


3
sinA , find the other trigonometric ratios of the angle A.


  1. Given that 15 cotA 8 , find the values of sinA and secA.

  2. If ‘C is the right angle of the right angled triangle ABC, AB = 13 cm and BC
    = 12 cm. and ‘ABC θ, find the values of sinθ,cosθ and tanθ.

  3. ‘B is the right angle of the right angled triangle ABC. If tanA 3 , verify the


truth of 3 sinAcosA 4.
Prove (6 – 20) :



  1. (i) 1 ;
    cosecA


1
secA

1
2  2 (ii) cotA^1 ;

1
cosA

1
2  2 (iii) tanA^1 ;

1
sinA

1
2  2


  1. (i) 1 ;
    secA


cosA
cosecA

sinA
 (ii) 1.
cotA

tanA
cosA

secA
 (iii) 1
1 cosec

1
1 sin

1
^2 A ^2 A^


  1. (i) c s 1
    1 tn


t
1 cot

tn
˜ 





seAcoecA
aA

coA
A

aA
; (ii) 1
1 cot

1
1 tan

1
^2 A ^2 A^


  1. si A A.
    A


A
aA

A
n cos
1 cot

sin
1 tn

cos








  1. tanA 1 `sin^2 A sinA.




  2. secA tanA




cosecA cotA
cosecA cotA

secA tanA








  1. 2 secA.
    cosecA 1


cosecA
cosecA 1

cosecA 2






  1. 2 secA.
    1 sinA


1
1 sinA

(^12)






  1. 2 tanA.
    cosecA 1


1
cosecA 1

(^12)






  1. 2 cosecA.
    sinA


1 cosA
1 cosA

sinA





  1. tanA


secA 1
secA 1

tanA



Free download pdf