untitled

(Barré) #1

or,
2 3


2
2 n

2 s

 siA

coA

or,
3


1
n

s
siA

coA

or, cotA cot 60 $
? A 60 $
(c) Given that, A 45 $


we have to prove that,
ta A

ta A
co A 2

2
1 n

1 n
s 2




.H.S. =L cos 2 A
=cos(2u 45 $)=cos 90 $= 0

R.H.S. =
ta A


ta A
2

2
1 n

1 n




= $

$
1 n 45

1 n 45
2

2
ta

ta



= 2

2
1 1

1 1
()

()




=
2

0
= 0

∴L.H.S. = R.H.S. (proved)
(d) Given equation, 2 cos^2 θ 3 sinθ 3 0
or, 2 ( 1 sin^2 θ 3 ( 1 sinθ) 0
or, 2 ( 1 sinθ)( 1 sinθ) 3 ( 1 sinθ) 0
or,( 1 sinθ){2(1 sinθ) 3 } 0
or,( 1 sinθ){ 2 sinθ 1 } 0
or, 1 sinθ 0 or 2 sinθ 1 1
? sinθ 1 or, 2 sinθ 1


or,sinθ sin 90 $ or,
2

1
sinθ

? θ 90 $ or, sinθ sin 30 $
or, θ 30 $
θ is an acute angle, so θ 30 $.


Exercise 9⋅ 2


  1. If
    2


1
cotθ , which one is the value of cotș?

(a)
3

1
(b) 1 (c) 3 (d) 2
Free download pdf