or,
2 3
2
2 n
2 s
siA
coA
or,
3
1
n
s
siA
coA
or, cotA cot 60 $
? A 60 $
(c) Given that, A 45 $
we have to prove that,
ta A
ta A
co A 2
2
1 n
1 n
s 2
.H.S. =L cos 2 A
=cos(2u 45 $)=cos 90 $= 0
R.H.S. =
ta A
ta A
2
2
1 n
1 n
= $
$
1 n 45
1 n 45
2
2
ta
ta
= 2
2
1 1
1 1
()
()
=
2
0
= 0
∴L.H.S. = R.H.S. (proved)
(d) Given equation, 2 cos^2 θ 3 sinθ 3 0
or, 2 ( 1 sin^2 θ 3 ( 1 sinθ) 0
or, 2 ( 1 sinθ)( 1 sinθ) 3 ( 1 sinθ) 0
or,( 1 sinθ){2(1 sinθ) 3 } 0
or,( 1 sinθ){ 2 sinθ 1 } 0
or, 1 sinθ 0 or 2 sinθ 1 1
? sinθ 1 or, 2 sinθ 1
or,sinθ sin 90 $ or,
2
1
sinθ
? θ 90 $ or, sinθ sin 30 $
or, θ 30 $
θ is an acute angle, so θ 30 $.
Exercise 9⋅ 2
- If
2
1
cotθ , which one is the value of cotș?
(a)
3
1
(b) 1 (c) 3 (d) 2