untitled

(Barré) #1

Now,MN ax˜ay axy
?loga(MN) xy,orloga(MN) logaMlogaN [putting the values of x,y]


?loga(MN) logaMlogaN. (proved)


Note 1.loga(MNP.....) logaMlogaNlogaP.........


Note 2.loga(MrN)zlogaMrlogaN


Formula 3. M N
N


M
loga loga loga

Proof : Let logaM x,logaN y;


?M ax,N ay

Now, y xy


x
a
a

a
N

M 

? x y
N


M
a ̧^ 
¹

·
̈
©

log§

? M N
N


M
loga ̧ loga loga
¹

·
̈
©

§ (proved).

Formula 4.logaMr rlogaM.


Proof : : Let logaM x;?M ax


? (M)r (ax)r; orMr arx
? logaMr rx; orlogaMr rlogaM
? logaMr rlogaM. (proved ).

N.B. : (logaM)rzrlogaM


Formula 5. loga M = logb M u loga b, (change of base)
Proof : Let, logaM x,logbM y


? ax M,by M
? ax by, or ax y by y

1 1
( ) ( )
or y


x
b a

? log b,
y

x

(^) a or x ylogab
or , x ylogab, or logaM logbMulogab (proved).
Corollary : ,
log
1
log
a
b
b
a^ or,
b
a
a
b
log
1
log

Free download pdf