Now,MN axay axy
?loga(MN) xy,orloga(MN) logaMlogaN [putting the values of x,y]
?loga(MN) logaMlogaN. (proved)
Note 1.loga(MNP.....) logaMlogaNlogaP.........
Note 2.loga(MrN)zlogaMrlogaN
Formula 3. M N
N
M
loga loga loga
Proof : Let logaM x,logaN y;
?M ax,N ay
Now, y xy
x
a
a
a
N
M
? x y
N
M
a ̧^
¹
·
̈
©
log§
? M N
N
M
loga ̧ loga loga
¹
·
̈
©
§ (proved).
Formula 4.logaMr rlogaM.
Proof : : Let logaM x;?M ax
? (M)r (ax)r; orMr arx
? logaMr rx; orlogaMr rlogaM
? logaMr rlogaM. (proved ).
N.B. : (logaM)rzrlogaM
Formula 5. loga M = logb M u loga b, (change of base)
Proof : Let, logaM x,logbM y
? ax M,by M
? ax by, or ax y by y
1 1
( ) ( )
or y
x
b a
? log b,
y
x
(^) a or x ylogab
or , x ylogab, or logaM logbMulogab (proved).
Corollary : ,
log
1
log
a
b
b
a^ or,
b
a
a
b
log
1
log