EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS
17.6 A useful generalisation
Sometimes we encounter inhomogeneous equations of a form slightly more gen-
eral than (17.1), given by
Ly(x)−μρ(x)y(x)=f(x) (17.53)
for some Hermitian operatorL, withysubject to the appropriate boundary
conditions andμa given (i.e.fixed) constant. To solve this equation we expand
y(x)andf(x) in terms of the eigenfunctionsyn(x) of the operatorL, which satisfy
Lyn(x)=λnρ(x)yn(x).
Working in terms of the normalised eigenfunctionsyˆn(x), we first expandf(x)
as follows:
f(x)=
∑∞
n=0
yˆn(x)
∫b
a
yˆ∗n(z)f(z)ρ(z)dz
=
∫b
a
ρ(z)
∑∞
n=0
yˆn(x)yˆ∗n(z)f(z)dz. (17.54)
Using (17.29) this becomes
f(x)=
∫b
a
ρ(x)
∑∞
n=0
ˆyn(x)yˆn∗(z)f(z)dz
=ρ(x)
∑∞
n=0
yˆn(x)
∫b
a
yˆ∗n(z)f(z)dz. (17.55)
Next, we expandy(x)asy=
∑∞
n=0cnyˆn(x) and seek the coefficientscn. Substituting
this and (17.55) into (17.53) we have
ρ(x)
∑∞
n=0
(λn−μ)cnˆyn(x)=ρ(x)
∑∞
n=0
yˆn(x)
∫b
a
yˆ∗n(z)f(z)dz,
from which we find that
cn=
∑∞
n=0
∫b
aˆy
∗
n(z)f(z)dz
λn−μ
.
Hence the solution of (17.53) is given by
y=
∑∞
n=0
cnyˆn(x)=
∑∞
n=0
yˆn(x)
λn−μ
∫b
a
ˆy∗n(z)f(z)dz=
∫b
a
∑∞
n=0
yˆn(x)yˆn∗(z)
λn−μ
f(z)dz.
From this we may identify the Green’s function
G(x, z)=
∑∞
n=0
yˆn(x)yˆ∗n(z)
λn−μ
.