26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1095
CV,elNdεel
dT
−N
z^2 eldzel
dT
g 1 ε 1 e−ε^1 /kBT+N
zel
g 1ε^21
kBT^2e−ε^1 /kBT−
N
zel^21
kBT^2(
g 1 ε 1 e−ε^1 /kBT) 2
+
N
zelg 1ε^21
kBT^2e−ε^1 /kBT
N
zel
e−ε^1 /kBT(
g 1 ε^21
kBT^2)(
1 −
g 1 e−ε^1 /kBT
zel)Exercise 26.8
Evaluate the electronic contribution to the molar heat capacity of NO at 298.15 K. The ground
electronic level is a^2 Π 1 / 2 term. The first excited level is a^2 Π 3 / 2 term with an energy 2.380×
10 −^21 J above the ground level. Both levels have a degeneracy equal to 2.The Entropy of a Dilute Gas
The entropy is also a sum of contributions.SStr+Srot+Svib+Sel (26.2-11)From Eq. (26.1-5)StrUtr
T+NkBln(
Ztr
N)
+NkB (26.2-12a)SrotUrot
T+NkBln(Zrot) (26.2-12b)SvibUvib
T+NkBln(Zvib) (26.2-12c)SelUel
T+NkBln(Zel) (26.2-12d)There is only one additive term,NkB, and there is only one divisor,N, in Eq. (26.1-5),
and these are placed with the translational contribution to the entropy.
The translational molar energy is 3R/2 and the additive term is equal toR, so that
the translational contribution to the molar entropy of a dilute gas isSm,tr5 R
2
+Rln(
ztr
NAv)
(26.2-13)
whereNAvis Avogadro’s constant. Using Eq. (25.3-21) and the ideal gas equation of
state, we writeztr
NAv(
2 πmkBT
h^3) 3 / 2
V
NAv(
2 πmkBT
h^3) 3 / 2
kBT
P(2πm)^3 /^2 (kBT)^5 /^2
h^3 P(2πM/NAv)^3 /^2 (kBT)^5 /^2
h^3 P◦