1094 26 Equilibrium Statistical Mechanics. II. Statistical Thermodynamics
EXAMPLE26.5
CalculateCVandCPfor 1.000 mol of^35 Cl 2 at 298.15 K.
Solution
From Table A.22 in Appendix A,ν ̃e 559 .7cm−^1. The rotational constant is not needed.
CV,m,tr
3 NAvkB
2
3 R
2
3(8.3145 J K−^1 mol−^1 )
2
12 .472 J K−^1 mol−^1
CV,m,rotNAvkBR 8 .3145 J K−^1 mol−^1
Letx
hν
kBT
hcν ̃e
kBT
(6. 6261 × 10 −^34 J s)(2. 9979 × 1010 cm s−^1 )(559.7cm−^1 )
(1. 3807 × 10 −^23 JK−^1 )(298.15 K)
2. 701
CV,m,vibRx^2
ex
(ex−1)^2
R(2.701)^2
e^2.^7009
(e^2.^701 −1)^2
4 .680 J K−^1 mol−^1
CV,m,el≈ 0
CV,mCV,m,tr+CV,m,rot+CV,m,vib+CV,m,el
12 .472 J K−^1 mol−^1 + 8 .3145 J mol−^1 + 4 .68 J K−^1 mol−^1
25 .466 J K−^1 mol−^1
CP,mCV,m+R 25 .466 J K−^1 mol−^1 + 8 .3145 J K−^1 mol−^1
33 .781 J K−^1 mol−^1
This compares with the experimental, value 33.949 J K−^1 mol−^1. The discrepancy is pre-
sumably due to the use of the harmonic oscillator–rigid rotor approximation.
EXAMPLE26.6
Derive a formula for the electronic contribution to the heat capacity for a system like NO for
which two electronic states must be included.
Solution
Take the energy of the ground electronic state as zero:
zelg 0 +g 1 e−ε^1 /kBT
εel
1
zel
g 1 ε 1 e−ε^1 /kBT