9.3 The Velocity Probability Distribution 401
Solution
<κx>
1
2kBT〈
κ^2 x〉
(m
2) 2 〈
v^4 x〉
(m
2) 2 ( m
2 πkBT) 1 / 2 ∫∞−∞v^4 xe−mv(^2) x/ 2 kBT
dvx
2
(m
2
) 2 ( m
2 πkBT
) 1 / 2 ∫∞
0
v^4 xe−mv
x^2 /^2 kBT
dvx
2
(m
2
) 2 ( m
2 πkBT
) 1 / 2
3
8
√
π
(
2 kBT
m
) 5 / 2
3
16
( 2 kBT)^2
3
4
k^2 BT^2
σκx
(
3
4
k^2 BT^2 −
1
4
k^2 BT^2
) 1 / 2
kBT
√
2
Exercise 9.8
a.Evaluateσκxfor oxygen molecules at 298 K.
b.Express this standard deviation as a fraction of thevxcontribution to the kinetic energy.
The probability thatulies between two valuesaandbcan be obtained by an
integration:
(
probability that
a<u<b
)
∫baf(u)du (normalized distribution) (9.3-37)The Gaussian probability distribution is an integrand function for which no antideriva-
tive has been found, so that a probability integral such as in Eq. (9.3-37) for a Gaussian
distribution must be carried out numerically or looked up in a table of values.EXAMPLE 9.5
Find the probability thatvxlies between 0 and 500 m s−^1 for neon atoms at 300 K.
Solution(probability)(
m
2 pkBT) 1 / 2 ∫500 m/s0e−mv
x^2 /^2 kBT
dvxWe change variables, letting
t(mv^2 x/ 2 kBT)^1 /^2 ; dt(m/ 2 kBT)^1 /^2 dvxAt the upper limit, we havet√
(3. 35 × 10 −^26 kg)(500 ms−^1 )^2
(2)(1. 3807 × 10 −^23 JK−^1 )(300 K) 1. 0055so that
(probability)
1
√
π∫ 1. 00550e−t
2
dt