136 Logarithms (Chapter 5)
More generally, in any basecwhere c 6 =1, c> 0 , we have theselaws of logarithms:
IfAandBare both
positive then:
² logcA+ logcB= logc(AB)
² logcA¡logcB= logc
μ
A
B
¶
² nlogcA= logc(An)
Proof:
² logc(AB)
= logc(clogcA£clogcB)
= logc(clogcA+ logcB)
= logcA+ logcB
² logc
³
A
B
́
= logc
μ
clogcA
clogcB
¶
= logc(clogcA¡logcB)
= logcA¡logcB
² logc(An)
= logc((clogcA)n)
= logc(cnlogcA)
=nlogcA
Example 7 Self Tutor
Use the laws of logarithms to write the following as a single logarithm or as an integer:
a lg 5 + lg 3 b log 324 ¡log 38 c log 25 ¡ 1
a lg 5 + lg 3
=lg(5£3)
=lg15
b log 324 ¡log 38
= log 3
¡ 24
8
¢
= log 33
=1
c log 25 ¡ 1
= log 25 ¡log 221
= log 2
¡ 5
2
¢
Example 8 Self Tutor
Simplify by writing as a single logarithm or as a rational number:
a 2lg7¡3lg2 b 2lg3+3 c
lg 8
lg 4
a 2lg7¡3lg2
=lg(7^2 )¡lg(2^3 )
=lg49¡lg 8
=lg
¡ 49
8
¢
b 2lg3+3
=lg(3^2 ) + lg(10^3 )
= lg 9 + lg 1000
= lg(9000)
c
lg 8
lg 4
=
lg 2^3
lg 2^2
=
3lg2
2lg2
=^32
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\136CamAdd_05.cdr Friday, 20 December 2013 1:03:10 PM BRIAN