Cambridge Additional Mathematics

(singke) #1
136 Logarithms (Chapter 5)

More generally, in any basecwhere c 6 =1, c> 0 , we have theselaws of logarithms:

IfAandBare both
positive then:

² logcA+ logcB= logc(AB)

² logcA¡logcB= logc

μ
A
B


² nlogcA= logc(An)

Proof:

² logc(AB)
= logc(clogcA£clogcB)
= logc(clogcA+ logcB)
= logcA+ logcB

² logc

³
A
B

́

= logc

μ
clogcA
clogcB


= logc(clogcA¡logcB)
= logcA¡logcB

² logc(An)
= logc((clogcA)n)
= logc(cnlogcA)
=nlogcA

Example 7 Self Tutor


Use the laws of logarithms to write the following as a single logarithm or as an integer:
a lg 5 + lg 3 b log 324 ¡log 38 c log 25 ¡ 1

a lg 5 + lg 3
=lg(5£3)
=lg15

b log 324 ¡log 38
= log 3

¡ 24
8

¢

= log 33
=1

c log 25 ¡ 1
= log 25 ¡log 221
= log 2

¡ 5
2

¢

Example 8 Self Tutor


Simplify by writing as a single logarithm or as a rational number:

a 2lg7¡3lg2 b 2lg3+3 c
lg 8
lg 4

a 2lg7¡3lg2
=lg(7^2 )¡lg(2^3 )
=lg49¡lg 8
=lg

¡ 49
8

¢

b 2lg3+3
=lg(3^2 ) + lg(10^3 )
= lg 9 + lg 1000
= lg(9000)

c
lg 8
lg 4

=
lg 2^3
lg 2^2
=
3lg2
2lg2
=^32

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\136CamAdd_05.cdr Friday, 20 December 2013 1:03:10 PM BRIAN

Free download pdf