Cambridge Additional Mathematics

(singke) #1
Logarithms (Chapter 5) 137

EXERCISE 5C


1 Write as a single logarithm or as an integer:
a lg 8 + lg 2 b lg 4 + lg 5 c lg 40¡lg 5
d lgp¡lgm e log 48 ¡log 42 f lg 5 + lg(0:4)
g lg 2 + lg 3 + lg 4 h 1 + log 23 i lg 4¡ 1
j lg 5 + lg 4¡lg 2 k 2 + lg 2 l t+lgw
m logm 40 ¡ 2 n log 36 ¡log 32 ¡log 33 o lg 50¡ 4
p 3 ¡log 550 q log 5100 ¡log 54 r lg

¡ 4
3

¢
+lg3+lg7

2 Write as a single logarithm or integer:
a 5lg2+lg3 b 2 lg 3 + 3 lg 2 c 3lg4¡lg 8
d 2 log 35 ¡3 log 32 e^12 log 6 4 + log 63 f^13 lg

¡ 1
8

¢

g 3 ¡lg 2¡2lg5 h 1 ¡3lg2+lg20 i 2 ¡^12 logn 4 ¡logn 5

3 Simplify without using a calculator:

a
lg 4
lg 2
b
log 527
log 59
c
lg 8
lg 2

d
lg 3
lg 9
e
log 325
log 3 (0:2)
f
log 48
log 4 (0:25)
Check your answers using a calculator.

Example 9 Self Tutor


Show that:
a lg

¡ 1
9

¢
=¡2lg3 b lg 500 = 3¡lg 2

a lg

¡ 1
9

¢

=lg(3¡^2 )
=¡2lg3

b lg 500
=lg

¡ 1000
2

¢

= lg 1000¡lg 2
=lg10^3 ¡lg 2
=3¡lg 2

4 Show that:
a lg 9 = 2 lg 3 b lg

p
2=^12 lg 2 c lg

¡ 1
8

¢
=¡3lg2

d lg

¡ 1
5

¢
=¡lg 5 e lg 5 = 1¡lg 2 f lg 5000 = 4¡lg 2
g log 6 4 + log 6 9=2 h log 153 ¡log 15 45 =¡ 1 i 2 log 12 2+^12 log 12 9=1

5 Find the exact value of:
a 3 lg 2 + 2 lg 5¡^12 lg 4 b 2 log 23 ¡log 26 ¡^12 log 29
c 5 log 6 2 + 2 log 63 ¡^12 log 616 ¡log 612

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_05\137CamAdd_05.cdr Tuesday, 21 January 2014 2:47:44 PM BRIAN

Free download pdf