Cambridge Additional Mathematics

(singke) #1
144 Logarithms (Chapter 5)

EXERCISE 5E.2


1 Write as a single logarithm or integer:
a ln 15 + ln 3 b ln 15¡ln 3 c ln 20¡ln 5
d ln 4 + ln 6 e ln 5 + ln(0:2) f ln 2 + ln 3 + ln 5
g 1 + ln 4 h ln 6¡ 1 i ln 5 + ln 8¡ln 2
j 2 + ln 4 k ln 20¡ 2 l ln 12¡ln 4¡ln 3

2 Write in the form lna, a 2 Q :
a 5ln3+ln4 b 3 ln 2 + 2 ln 5 c 3ln2¡ln 8
d 3ln4¡2ln2 e^13 ln 8 + ln 3 f^13 ln( 271 )
g ¡ln 2 h ¡ln(^12 ) i ¡2ln(^14 )

Example 18 Self Tutor


Show that:
a ln

¡ 1
9

¢
=¡2ln3 b ln

³
e
4

́
=1¡2ln2

a ln

¡ 1
9

¢

=ln(3¡^2 )
=¡2ln3

b ln

³
e
4

́
=lne¡ln 4
=lne^1 ¡ln 2^2
=1¡2ln2

3 Show that:
a ln 27 = 3 ln 3 b ln

p
3=^12 ln 3 c ln( 161 )=¡4ln2

d ln(^16 )=¡ln 6 e ln

³
p^1
2

́
=¡^12 ln 2 f ln

³e
5

́
=1¡ln 5

4 Show that:
a ln^3

p
5=^13 ln 5 b ln( 321 )=¡5ln2

c ln

μ
1

p (^52)

=¡^15 ln 2 d ln
μ
e^2
8

=2¡3ln2


Example 19 Self Tutor


Write the following equations without logarithms:
a lnA=2lnc+3 b lnM=3a¡ln 2

a lnA=2lnc+3
) lnA=lnc^2 +lne^3
) lnA=ln(c^2 e^3 )
) A=c^2 e^3

b lnM=3a¡ln 2
) lnM=lne^3 a¡ln 2

) lnM=ln

μ
e^3 a
2


) M=^12 e^3 a

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\144CamAdd_05.cdr Tuesday, 21 January 2014 2:49:34 PM BRIAN

Free download pdf