GRAPHING
PACKAGELogarithms (Chapter 5) 147Example 23 Self Tutor
Find algebraically the exact points of intersection of y=ex¡ 3 and y=1¡ 3 e¡x.The functions meet where
ex¡3=1¡ 3 e¡x
) ex¡4+3e¡x=0
) e^2 x¡ 4 ex+3=0 fmultiplying each term byexg
) (ex¡1)(ex¡3) = 0
) ex=1or 3
) x=ln1or ln 3
) x=0or ln 3When x=0, y=e^0 ¡3=¡ 2
When x=ln3, y=eln 3¡3=0) the functions meet at (0,¡2) and at (ln 3,0).9 Solve forx:
a e^2 x=2ex b ex=e¡x c e^2 x¡ 5 ex+6=0
d ex+2=3e¡x e 1+12e¡x=ex f ex+e¡x=310 Find algebraically the point(s) of intersection of:
a y=ex and y=e^2 x¡ 6 b y=2ex+1 and y=7¡ex
c y=3¡ex and y=5e¡x¡ 3A logarithm in basebcan be written with a different basecusing thechange of base rule:logba=logca
logcbfor a,b,c> 0 and b,c 6 =1.Proof: If logba=x, then bx=a
) logcbx= logca ftaking logarithms in basecg
) xlogcb= logca fpower law of logarithmsg) x=
logca
logcb) logba=
logca
logcbWe can use this rule to write logarithms in base 10 or basee. This is useful in helping us evaluate them on
our calculator.G The change of base rule
4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_05\147CamAdd_05.cdr Tuesday, 21 January 2014 2:49:58 PM BRIAN