Cambridge Additional Mathematics

(singke) #1
If ,
then.

2=
= log

x a
xaw

148 Logarithms (Chapter 5)

Example 24 Self Tutor


Evaluate log 29 by:
a changing to base 10 b changing to basee.

a log 2 9=log^109
log 102

¼ 3 : 17 b log 2 9=ln 9
ln 2

¼ 3 : 17

The rule can also be used to solve equations involving logarithms with different bases.

Example 25 Self Tutor


Solve forx: log 2 x= log 815

log 2 x= log 815

) log 2 x=
log 215
log 28
fwriting RHS with base 2 g

) log 2 x=log^215
3

) log 2 x= log 215

1
3

) x=^3

p
15

EXERCISE 5G


1 Use the rule logba=
log 10 a
log 10 b
to evaluate, correct to 3 significant figures:

a log 312 b log 1
2

1250 c log 3 (0:067) d log 0 : 4 (0:006 984)

2 Use the rule logba=
lna
lnb

to solve, correct to 3 significant figures:

a 2 x=0: 051 b 4 x= 213: 8 c 32 x+1=4: 069

3 Write:
a log 926 in the form alog 3 b, where a,b 2 Q
b log 211 in the form alog 4 b, where a,b 2 Z

c^6
log 725

in the form alog 5 b, where a,b 2 Z.

4 Solve forx:
a log 3 x= log 2750 b log 2 x= log 413 c log 25 x= log 57
d log 3

p
x+ log 9 x= log 35 e log 8 x^2 ¡log 23

p
x=1 f log 4 x^3 + log 2

p
x=8

5aShow that logab=
1
logba
.

b Solve forx:
i log 3 x= 4 logx 3 ii log 2 x¡4 = 5 logx 2 iii 2 log 4 x+ 3 logx4=7

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\148CamAdd_05.cdr Tuesday, 21 January 2014 2:50:02 PM BRIAN

Free download pdf