Polynomials (Chapter 6) 159
If P(x) is divided by ax+b until a constant remainderRis obtained, then
P(x)
ax+b
=Q(x)+
R
ax+b
where ax+b is thedivisor, D(x),
Q(x) is thequotient,
and R is theremainder.
Notice that P(x)=Q(x)£(ax+b)+R.
Division algorithm
We can divide a polynomial by another polynomial using an algorithm similar to that used for division of
whole numbers:
Step 1: What do we multiplyxby to get 2 x^3?
The answer is 2 x^2 ,
and 2 x^2 (x+2)=2x^3 +4x^2.
Step 2: Subtract 2 x^3 +4x^2 from 2 x^3 +7x^2.
The answer is 3 x^2.
Step 3: Bring down the 10 xto obtain 3 x^2 +10x.
Return toStep 1with the question:
“What must we multiplyxby to get 3 x^2 ?”
The answer is 3 x, and 3 x(x+2)=3x^2 +6x ....
We continue the process until we are left with a constant.
2 x^2 +3x+4
x+2 2 x^3 +7x^2 +10x+15
¡( 2 x^3 +4x^2 )
3 x^2 +10x
¡( 3 x^2 +6x)
4 x+15
¡( 4 x+8)
7
So,
2 x^3 +7x^2 +10x+15
x+2
=2x^2 +3x+4+
7
x+2
Example 4 Self Tutor
Find the quotient and remainder for
x^3 ¡x^2 ¡ 3 x¡ 5
x¡ 3
.
Hence write x^3 ¡x^2 ¡ 3 x¡ 5 in the form Q(x)£(x¡3) +R.
x^2 +2x+3
x¡ 3 x^3 ¡ x^2 ¡ 3 x¡ 5
¡(x^3 ¡ 3 x^2 )
2 x^2 ¡ 3 x
¡( 2 x^2 ¡ 6 x)
3 x¡ 5
¡( 3 x¡ 9 )
4
The quotient is x^2 +2x+3
and the remainder is 4.
)
x^3 ¡x^2 ¡ 3 x¡ 5
x¡ 3
=x^2 +2x+3+
4
x¡ 3
) x^3 ¡x^2 ¡ 3 x¡5=(x^2 +2x+ 3)(x¡3) + 4.
Check your answer by
expanding the RHS.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_06\159CamAdd_06.cdr Thursday, 3 April 2014 5:18:23 PM BRIAN