Cambridge Additional Mathematics

(singke) #1
Polynomials (Chapter 6) 159

If P(x) is divided by ax+b until a constant remainderRis obtained, then
P(x)
ax+b

=Q(x)+

R
ax+b

where ax+b is thedivisor, D(x),
Q(x) is thequotient,
and R is theremainder.

Notice that P(x)=Q(x)£(ax+b)+R.

Division algorithm
We can divide a polynomial by another polynomial using an algorithm similar to that used for division of
whole numbers:

Step 1: What do we multiplyxby to get 2 x^3?
The answer is 2 x^2 ,
and 2 x^2 (x+2)=2x^3 +4x^2.

Step 2: Subtract 2 x^3 +4x^2 from 2 x^3 +7x^2.
The answer is 3 x^2.
Step 3: Bring down the 10 xto obtain 3 x^2 +10x.
Return toStep 1with the question:
“What must we multiplyxby to get 3 x^2 ?”
The answer is 3 x, and 3 x(x+2)=3x^2 +6x ....
We continue the process until we are left with a constant.

2 x^2 +3x+4
x+2 2 x^3 +7x^2 +10x+15
¡( 2 x^3 +4x^2 )
3 x^2 +10x
¡( 3 x^2 +6x)
4 x+15
¡( 4 x+8)
7

So,
2 x^3 +7x^2 +10x+15
x+2
=2x^2 +3x+4+
7
x+2

Example 4 Self Tutor


Find the quotient and remainder for
x^3 ¡x^2 ¡ 3 x¡ 5
x¡ 3

.

Hence write x^3 ¡x^2 ¡ 3 x¡ 5 in the form Q(x)£(x¡3) +R.

x^2 +2x+3
x¡ 3 x^3 ¡ x^2 ¡ 3 x¡ 5
¡(x^3 ¡ 3 x^2 )
2 x^2 ¡ 3 x
¡( 2 x^2 ¡ 6 x)
3 x¡ 5
¡( 3 x¡ 9 )
4

The quotient is x^2 +2x+3
and the remainder is 4.

)
x^3 ¡x^2 ¡ 3 x¡ 5
x¡ 3
=x^2 +2x+3+
4
x¡ 3
) x^3 ¡x^2 ¡ 3 x¡5=(x^2 +2x+ 3)(x¡3) + 4.

Check your answer by
expanding the RHS.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_06\159CamAdd_06.cdr Thursday, 3 April 2014 5:18:23 PM BRIAN

Free download pdf