162 Polynomials (Chapter 6)
Azeroof a polynomial is a value of the variable which makes the polynomial equal to zero.
®is azeroof polynomial P(x) , P(®)=0.
Therootsof a polynomialequationare the solutions to the equation.
®is aroot(orsolution)ofP(x)=0, P(®)=0.
Therootsof P(x)=0are thezerosof P(x) and thex-intercepts of the graph of y=P(x).
Consider P(x)=x^3 +2x^2 ¡ 3 x¡ 10
) P(2) = 2^3 + 2(2)^2 ¡3(2)¡ 10
=8+8¡ 6 ¡ 10
=0
This tells us: ² 2 is a zero of x^3 +2x^2 ¡ 3 x¡ 10
² 2 is a root of x^3 +2x^2 ¡ 3 x¡10 = 0
² the graph of y=x^3 +2x^2 ¡ 3 x¡ 10 has thex-intercept 2.
If P(x)=(x+ 1)(2x¡1)(x+2), then (x+1), (2x¡1), and (x+2)are itslinear factors.
Likewise P(x)=(x+3)^2 (2x+3) has been factorised into 3 linear factors, one of which is repeated.
x¡® is afactorof the polynomial P(x) , there exists a polynomial Q(x)
such that P(x)=(x¡®)Q(x).
Example 7 Self Tutor
Find the zeros of:
a x^2 ¡ 6 x+2 b x^3 ¡ 5 x
a We wish to findxsuch that
x^2 ¡ 6 x+2=0
) x=
6 §
p
36 ¡4(1)(2)
2
) x=
6 §
p
28
2
) x=
6 § 2
p
7
2
) x=3§
p
7
The zeros are 3 ¡
p
7 and 3+
p
7.
b We wish to findxsuch that
x^3 ¡ 5 x=0
) x(x^2 ¡5) = 0
) x(x+
p
5)(x¡
p
5) = 0
) x=0or §
p
5
The zeros are ¡
p
5 , 0 , and
p
5.
B Zeros, roots, and factors
An equation has.
A polynomial has.
roots
zeros
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\162CamAdd_06.cdr Friday, 20 December 2013 12:59:42 PM BRIAN