Cambridge Additional Mathematics

(singke) #1
A linear relationship between
and indicates a power
relationship between and.

lgyxlg
yx

O x

lgy

(3 2),

(15 6),

O

lgy

lgx

(3 8),

(1 2),

O

lgy

(2 1),

(6 -1),

lgx

O

lgy

lgx

(8 2),

Straight line graphs (Chapter 7) 191

6

Example 15 Self Tutor


Writeyin terms ofx, giving your answer in
the form y=a£xb, where a,b 2 Q.

The graph of lgy against lgx is linear.

The gradient is
8 ¡ 2
3 ¡ 1
=3.

) the equation is lgy¡2 = 3(lgx¡1)
) lgy¡2=3lgx¡ 3
) lgy=3lgx¡ 1
) lgy=lgx^3 ¡lg 10

) lgy=lg

μ
x^3
10


) y= 101 £x^3

7 Consider the graph alongside.
a Write an equation for the line in the form lgy=mlgx+c.
b Hence writeyin terms ofx.

8 Writeyin terms ofx:
abc

a Writeyin terms ofx, giving your answer in the form
y=a£ 10 bx, where a,b 2 Q.
b Findywhen x=6.

O

lgy

lgx

(1 2),

3
O

lgy

lgx

(3 7 5),.

(7 15 5),.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_07\191CamAdd_07.cdr Tuesday, 21 January 2014 12:11:36 PM BRIAN

Free download pdf