a
LESS SPACE GIVEN!!!
LESS SPACE GIVEN!!!
208 The unit circle and radian measure (Chapter 8)
Theunit circleis the circle with
centre(0,0)and radius 1 unit.
CIRCLES WITH CENTRE(0,0)
Consider a circle with centre(0,0)and radiusrunits.
Suppose P(x,y) is any point on this circle.
Since OP=r,
p
(x¡0)^2 +(y¡0)^2 =r fdistance formulag
) x^2 +y^2 =r^2
x^2 +y^2 =r^2 is the equation of a circle with centre(0,0)
and radiusr.
The equation of theunit circleis x^2 +y^2 =1.
ANGLE MEASUREMENT
Suppose P lies anywhere on the unit circle, and A is(1,0).
Letμbe the angle measured from [OA] on the positivex-axis.
μis positivefor anticlockwise rotations and
negativefor clockwise rotations.
For example: μ= 210±=^76 ¼
Á=¡ 150 ±=¡^56 ¼
DEFINITION OF SINE AND COSINE
Consider a point P(a,b) which lies on the unit circle in the first
quadrant. [OP]makes an angleμwith thex-axis as shown.
Using right angled triangle trigonometry:
cosμ=
ADJ
HYP
=
a
1
=a
sinμ=
OPP
HYP
=
b
1
=b
tanμ=
OPP
ADJ
=
b
a
=
sinμ
cosμ
C
TRIGONOMETRIC RATIOS
C The unit circle and the trigonometric ratios
y
x
1
-1 1
-1
O
y
x
q
P
A
1
Positive
direction
Negative
direction
O
b
P,(a b)
1
1
1
μ
x
y
O a
Á
μ
x
y
30 ° O
x
y
r
P,(x y)
O(0 0),
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_08\208CamAdd_08.cdr Monday, 6 January 2014 11:42:27 AM BRIAN