Cambridge Additional Mathematics

(singke) #1
a

LESS SPACE GIVEN!!!


LESS SPACE GIVEN!!!


208 The unit circle and radian measure (Chapter 8)

Theunit circleis the circle with
centre(0,0)and radius 1 unit.

CIRCLES WITH CENTRE(0,0)


Consider a circle with centre(0,0)and radiusrunits.
Suppose P(x,y) is any point on this circle.
Since OP=r,
p
(x¡0)^2 +(y¡0)^2 =r fdistance formulag
) x^2 +y^2 =r^2

x^2 +y^2 =r^2 is the equation of a circle with centre(0,0)
and radiusr.
The equation of theunit circleis x^2 +y^2 =1.

ANGLE MEASUREMENT


Suppose P lies anywhere on the unit circle, and A is(1,0).
Letμbe the angle measured from [OA] on the positivex-axis.

μis positivefor anticlockwise rotations and
negativefor clockwise rotations.

For example: μ= 210±=^76 ¼
Á=¡ 150 ±=¡^56 ¼

DEFINITION OF SINE AND COSINE


Consider a point P(a,b) which lies on the unit circle in the first
quadrant. [OP]makes an angleμwith thex-axis as shown.
Using right angled triangle trigonometry:

cosμ=
ADJ
HYP
=
a
1
=a

sinμ=
OPP
HYP
=
b
1
=b

tanμ=
OPP
ADJ
=
b
a
=
sinμ
cosμ

C


TRIGONOMETRIC RATIOS


C The unit circle and the trigonometric ratios

y

x

1

-1 1

-1

O

y

x

q

P

A

1

Positive
direction

Negative
direction

O

b

P,(a b)

1

1

1

μ
x

y

O a

Á

μ
x

y

30 ° O

x

y

r

P,(x y)

O(0 0),

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_08\208CamAdd_08.cdr Monday, 6 January 2014 11:42:27 AM BRIAN

Free download pdf