The unit circle and radian measure (Chapter 8) 209
In general, for a point P anywhere on the unit circle:
² cosμis thex-coordinate of P
² sinμ is they-coordinate of P
We can hence find the coordinates of any point on the unit circle with given angleμmeasured from the
positivex-axis.
For example:
Since the unit circle has equation x^2 +y^2 =1, (cosμ)^2 + (sinμ)^2 =1 for allμ.
We commonly write this as cos^2 μ+ sin^2 μ=1.
For all points on the unit circle, ¡ 16 x 61 and ¡ 16 y 61.
So, ¡ 16 cosμ 61 and ¡ 16 sinμ 61 for allμ.
DEFINITION OF TANGENT
Suppose we extend [OP] to meet the tangent from A(1,0).
We let the intersection between these lines be point Q.
Note that as P moves, so does Q.
The position of Q relative to A is defined as the tangent
function.
Notice that 4 s ONP and OAQ are equiangular and therefore
similar.
Consequently AQ
OA
=NP
ON
and hence AQ
1
=sinμ
cosμ
.
Under the definition that AQ= tanμ, tanμ=
sinμ
cosμ
.
y
1 x
1
327 °
O -33°
( 327 327 )
( (-33 ) (-33 ))
cos °,sin ° or
°, °
__
cos__sin
x
y
A,() 10 ¡
tan¡μ
Q,(1¡¡tanμ)
P
μ
cos¡μ N
1
1
-1
-1 tangent
O
sin¡μ
y
1 x
1 ()cos75 sin75°°,
()cos165 sin165°°,
()cos255 sin255°°,
75 °
165 °
255 °
O
x
y
q
1
-1 1
-1
P,()cos sin¡q¡q
x O
y
q
1
-1 1
-1
P,()cos sin¡q¡q
O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\209CamAdd_08.cdr Friday, 4 April 2014 11:56:39 AM BRIAN