The unit circle and radian measure (Chapter 8) 209In general, for a point P anywhere on the unit circle:² cosμis thex-coordinate of P
² sinμ is they-coordinate of PWe can hence find the coordinates of any point on the unit circle with given angleμmeasured from the
positivex-axis.
For example:Since the unit circle has equation x^2 +y^2 =1, (cosμ)^2 + (sinμ)^2 =1 for allμ.We commonly write this as cos^2 μ+ sin^2 μ=1.For all points on the unit circle, ¡ 16 x 61 and ¡ 16 y 61.So, ¡ 16 cosμ 61 and ¡ 16 sinμ 61 for allμ.DEFINITION OF TANGENT
Suppose we extend [OP] to meet the tangent from A(1,0).
We let the intersection between these lines be point Q.
Note that as P moves, so does Q.
The position of Q relative to A is defined as the tangent
function.
Notice that 4 s ONP and OAQ are equiangular and therefore
similar.
Consequently AQ
OA=NP
ONand hence AQ
1=sinμ
cosμ.Under the definition that AQ= tanμ, tanμ=sinμ
cosμ.y1 x1327 °
O -33°
( 327 327 )
( (-33 ) (-33 ))cos °,sin ° or
°, °__
cos__sinxyA,() 10 ¡tan¡μQ,(1¡¡tanμ)
Pμ
cos¡μ N11-1-1 tangentOsin¡μy1 x1 ()cos75 sin75°°,()cos165 sin165°°,()cos255 sin255°°,75 °
165 °255 °Oxyq1-1 1-1
P,()cos sin¡q¡qx Oyq1-1 1-1P,()cos sin¡q¡qO4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\209CamAdd_08.cdr Friday, 4 April 2014 11:56:39 AM BRIAN