aLESS SPACE GIVEN!!!
LESS SPACE GIVEN!!!
208 The unit circle and radian measure (Chapter 8)Theunit circleis the circle with
centre(0,0)and radius 1 unit.CIRCLES WITH CENTRE(0,0)
Consider a circle with centre(0,0)and radiusrunits.
Suppose P(x,y) is any point on this circle.
Since OP=r,
p
(x¡0)^2 +(y¡0)^2 =r fdistance formulag
) x^2 +y^2 =r^2x^2 +y^2 =r^2 is the equation of a circle with centre(0,0)
and radiusr.
The equation of theunit circleis x^2 +y^2 =1.ANGLE MEASUREMENT
Suppose P lies anywhere on the unit circle, and A is(1,0).
Letμbe the angle measured from [OA] on the positivex-axis.μis positivefor anticlockwise rotations and
negativefor clockwise rotations.For example: μ= 210±=^76 ¼
Á=¡ 150 ±=¡^56 ¼DEFINITION OF SINE AND COSINE
Consider a point P(a,b) which lies on the unit circle in the first
quadrant. [OP]makes an angleμwith thex-axis as shown.
Using right angled triangle trigonometry:cosμ=
ADJ
HYP
=
a
1
=asinμ=
OPP
HYP
=
b
1
=btanμ=
OPP
ADJ
=
b
a
=
sinμ
cosμC
TRIGONOMETRIC RATIOS
C The unit circle and the trigonometric ratios
yx1-1 1-1OyxqPA1Positive
directionNegative
directionObP,(a b)111μ
xyO aÁμ
xy30 ° OxyrP,(x y)O(0 0),cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_08\208CamAdd_08.cdr Monday, 6 January 2014 11:42:27 AM BRIAN